Линейная алгебра и аналитическая геометрия/Матрицы и определители
- Предварительные понятия
- Метод координат
- Алгебраические линии первого и второго порядка
- Комплексные числа
- Матрицы и определители
- Совместное использование точек, векторов и матриц в формулах
- Системы линейных уравнений
- Определение векторного пространства
- Линейно-зависимые системы векторов
- Подпространства векторного пространства
- Линейные многообразия
- Аналитическая геометрия в пространстве
- Линейные пространства. Линейные преобразования
- Задачи
В этой главе будет рассмотрен формальный аппарат, используемый в линейной алгебре, — алгебра матриц. При таком «предварительном» введении понятий матричной алгебры определения могут выглядеть недостаточно мотивированными. Однако их смысл проясняется в дальнейшем изложении курса.
Действия над матрицами
правитьОпределение матрицы
правитьОпределение Матрицей называют прямоугольную таблицу чисел (вещественных или комплексных). Эти числа[1] называют элементами матрицы. Матрицу будем записывать следующим способом:
(1)
Элементы нумеруются двумя индексами; первый из них есть номер строки и меняется вдоль столбца, второй — номер столбца, который меняется вдоль строки. Для матрицы (1) употребляется также краткое обозначение, которое явно указывает на её размеры:
(2)
Матрица, составленная из m строк и n столбцов, называется (m х n)-матрицей. Такая матрица возникнет, например, при последовательном выписывании коэффициентов при неизвестных в системе из m линейных алгебраических уравнений с n неизвестными. Множество всех (m х n)-матриц будем обозначать через . В некоторых случаях будем обозначать элемент матрицы А, как
Линейные действия над матрицами
правитьВведем линейные действия над матрицами — сложение матриц и умножение матрицы на число. Сложение матриц определяется только для матриц совпадающих размеров: если , то , где
(3)
Таким образом, сложение матриц состоит в поэлементном сложении. Умножение матрицы на число состоит в умножении на это число каждого элемента матрицы. Для произведения матрицы А на число используется как обозначение A, так и обозначение A . Таким образом,
(4)
Ясно, что , если . При этом предполагается, что в случае вещественных матриц их можно умножать на вещественные множители. В классе комплексных матриц подразумевается умножение на комплексные числа. Перечислим свойства линейных операций в классе матриц
Действия транспонирования и сопряжения
правитьПримечания
править- ↑ Иногда рассматривают матрицы, составленные не из чисел, а из элементов другой природы.