Теоретические задачи с XXXV международной физической олимпиады в Корее

Отчёт об олимпиаде читайте на сайте журнала Потенциал по адресу http://potential.org.ru/bin/view/Phys/ArtDt200501192007PH7C4J1

Сопротивление "Пинг-понг"

править

Конденсатор состоит из двух параллельных пластин в форме кругов радиусом R, расположенных на расстоянии d (d<<R) друг от друга (рис 1.1а). Верхняя пластина присоединена к источнику постоянного напряжения с потенциалом V, а нижняя пластина заземлена. Затем тонкий маленький диск массой m радиусом r (r<<R,d) и пренебрежимо малой толщиной (t<<r) помещают в центр нижней пластины (рис 1.1b). Пластины и диск, изготовленные из хорошо проводящего материала, находятся в вакууме. Всеми электростатическими краевыми эффектами и индуцированными зарядами, а также индуктивностью всей цепи и связанными с ней эффектами можно пренебречь. Диэлектрическая постоянная ε0 считается известной.

 

Рисунок 1.1 Схематический чертеж параллельных пластин конденсатора, подключенных к источнику постоянного напряжения, (а) и вид сбоку параллельных пластин с маленьким диском, помещённым внутри конденсатора (b). (Смотри подробное описание в тексте).

(а) [1.2 балла] Рассчитайте электростатическую силу Fp взаимодействия между пластинами, находящимися на расстоянии d, до помещения диска между ними (рис. 1.1а).

(b) [0.8 балла] Когда диск помещён на нижнюю пластину (рис. 1.1b), диск приобретает заряд q, пропорциональный напряжению V на конденсаторе: q = CV. Выразите C через r, d и ε0.

(c) [0.5 балла] Параллельные пластины конденсатора расположены перпендикулярно гравитационному полю g. Чтобы диск в первый раз поднялся вверх из исходного положения, необходимо приложить напряжение V, превышающее пороговое значение Vth. Выразите Vth через m, g, d и C .


(d) [2.3 балла] При V > Vth диск движется вверх-вниз между пластинами. (Предполагается, что диск движется строго вертикально без качания). Столкновения между диском и пластиной неупругие с коэффициентом восстановления η (Vafter /Vbefore ), где Vbefore и Vafter – скорости диска соответственно до и после столкновения. Пластины закреплены неподвижно. После большого количества столкновений скорость диска сразу после очередного столкновения с нижней пластиной стремится к значению, которое назовём «скоростью в установившемся режиме» Vs. Величина Vs зависит от V по формуле:  

Выразите коэффициенты α и β через m, g , C , d и η. Предполагается, что диск касается пластины одновременно всей поверхностью, так что полная перезарядка происходит мгновенно при каждом столкновении.

(e) [2.2 балла] В установившемся режиме средний по времени ток I через обкладки конденсатора при условии qV << mgd может быть представлен в виде I = γV2. Выразите коэффициент γ через m, C, d и η.

(f) [3 балла] При очень медленном уменьшении приложенного напряжения V существует критическое значение напряжения Vc, ниже которого ток скачком прекращает течь. Выразите Vc и соответствующий ему ток Ic через m, g, C, d и η. Сравнив Vc с пороговым значением Vth , определенным в пункте (с), приближённо изобразите зависимости I от V (на листе ответов) при увеличении и при уменьшении V в пределах от V = 0 до 3Vth.


Ответ к задаче Сопротивление "Пинг-понг"

править

(a) При подключении к источнику между пластинами возникает однородное электростатическое поле, модуль напряжённости которого  . Так как это поле создаётся зарядами каждой из пластин и эти заряды равны между собой по модулю, то  . Поле, создаваемое нижней пластиной, действует на верхнюю с силой  . Заряды пластин  , где   - ёмкость конденсатора, образованного этими пластинами. Сила взаимодействия между пластинами

 .

(b) Заряд участка поверхности нижней пластины, на котором находится диск, полностью переходит на диск. Диск приобретает заряд  .

 .

(c) Диск оторвётся от нижней пластины, если действующая на него со стороны электростатического поля сила превзойдет силу тяжести. Электростатическое поле будет действовать на диск с силой  . При пороговом значении приложенного напряжения  . Пороговое значение напряжения

 .

(d) После столкновения с нижней пластиной в установившемся режиме диск приобретает скорость vs и заряд q. Перед ударом о верхнюю пластину его скорость   можно выразить из энергетических соображений:  .

После удара о верхнюю пластину скорость диска  , а его заряд равен –q. Скорость диска перед очередным ударом о нижнюю пластину  :  . Скорость диска после удара о нижнюю пластину  .

Используя приведённые соотношения, выражаем  .

 .


(e) Средний по времени ток через обкладки конденсатора  , где   – заряд, который переносит диск за один цикл (вверх – вниз) движения между пластинами,   – время движения диска от нижней пластины до верхней и обратно. Так как и движение вверх, и движение вниз происходят с постоянными ускорениями, можно выразить средние скорости этих движений:  ;  . Тогда   и  .

Среднюю силу тока   найдём, используя выражения для   ;  ;  из части (d). Учитывая, что  ,  .

 .

(f) Ток перестаёт течь, если кинетической энергии диска после удара о нижнюю пластину оказывается недостаточно, чтобы долететь до верхней пластины:  . Используя выражение для Vs, получим условие, которому должно удовлетворять V, чтобы ток прекратился:  . Критическое значение напряжения

 

При таком напряжении скорость диска при подлёте к верхней пластине обращается в нуль. Тогда время движения вверх  , время движения вниз

 .

Сила тока  .


С учётом выражения для Vc ,

 .

График зависимости I от V при увеличении и уменьшении V будет иметь следующий вид:

 

Поднимающийся шар

править

Резиновый шар, наполненный гелием, поднимается в небо. Давление и температура атмосферного воздуха уменьшаются с высотой. В дальнейшем будем предполагать, что сферическая форма шара сохраняется, несмотря на прикреплённый к нему груз, и пренебрежём объёмом самой оболочки и груза. Будем также предполагать, что температура гелия внутри шара совпадает с температурой окружающего воздуха, и считать гелий и воздух идеальными газами. Универсальная газовая постоянная R=8,31 Дж/(моль•К); молярные массы гелия MH и воздуха MA равны MH = 4,00 x 10-3 кг/моль и MA = 28,9 x 10-3 кг/моль соответственно. Ускорение свободного падения g=9,8 м/с2.

ЧАСТЬ А

править

(а) [1.5 балла] Предположим, что окружающий воздух имеет давление P и температуру T. Давление внутри шара выше наружного из-за упругих свойств оболочки. Пусть шар содержит n молей гелия и давление внутри него равно P+ΔP. Определите выталкивающую силу FB, действующую на шар, как функцию от P и ΔP.

(b) [2 балла] В Корее в один из летних дней было найдено, что температура T воздуха на высоте z над уровнем моря задаётся соотношением T(z)=T0(1 – z/z0) в диапазоне 0< z <15 км, где z0 =49 км и T0 =303 К. Давление P0 и плотность воздуха ρ0 на уровне моря равны P0=1 атм = 1,01 x 105 Па и ρ0=1,16 кг/м3 соответственно. В указанном диапазоне высот давление изменяется с высотой по закону   Выразите постоянную η через величины z0, ρ0, P0, и g; определите её значение с точностью до двух значащих цифр. Считайте ускорение свободного падения g постоянным, не зависящим от высоты.

ЧАСТЬ В

править

Когда резиновый шар (с радиусом r0 в нерастянутом состоянии) раздувается до сферы радиуса  , его оболочка из-за растяжения приобретает упругую энергию. В упрощённой теории упругая энергия U надутой сферической оболочки при постоянной температуре T описывается выражением  

где   – коэффициент растяжения (по радиусу), а k – некоторая константа, выраженная в единицах моль/м2.

(c) [2 балла] Выразите ΔP через параметры, входящие в выражение (2.2), и изобразите графически (на листе ответов) зависимость ΔP от λ.

(d) [1.5 балла] Постоянная величина k может быть определена через количество молей гелия, необходимых для надувания шара. При T0 = 303 К и P0 = 1,0 атм нерастянутый шар (при r = r0) содержит n0 = 12,5 молей гелия. Для раздувания шара до значения λ = 1,5 при неизменных температуре T0 и внешнем давлении P0 в нём должно находиться в общей сложности n = 3,6n0 = 45 молей гелия. Выразите параметр a оболочки, определяемый как отношение a = k/k0 (где  ), через n, n0 и λ. Вычислите его значение с точностью до двух значащих цифр.


ЧАСТЬ С

править

Шар накачали на уровне моря как в пункте (d) (коэффициент растяжения по радиусу λ =1,5, число молей гелия внутри n=3,6n0=45 молей, при температуре T0=303К и давлении P0=1,0 атм=1,01x105 Па). Общая масса шара, включая газ, оболочку и груз, равна MT=1,12 кг. Такой шар начинает подниматься от уровня моря.

(e) [3 балла] Пусть этот шар поднялся до такой высоты zf , на которой выталкивающая сила уравновешивается суммарной силой тяжести. Определите zf и коэффициент растяжения λf на этой высоте. Рассчитайте их числовые значения с точностью до двух значащих цифр. Утечкой газа и боковым смещением из-за ветра пренебрегите

Ответ к задаче Поднимающийся шар

править

ЧАСТЬ А

править

(a) Выталкивающая сила  , где   – плотность окружающего воздуха,   – объём гелия.

 .

(b) Рассмотрим слой воздуха толщиной dz, расположенный на высоте z. Условие равновесия этого слоя   или  .

 ;

 .

Таким образом,   и

 .

ЧАСТЬ В

править

(c) Позволим оболочке бесконечно медленно растягиваться. При увеличении её радиуса на dr силы давления (газа внутри оболочки и окружающего воздуха) совершат работу  . Энергия упругой деформации оболочки при этом возрастёт на  .


 . Искомая зависимость имеет вид  . Эта зависимость имеет максимум при  . При  . При  . Примерный график зависимости   при   приведён на рисунке 2.1.

Рис.2.1.  


(d) При   давление гелия в шаре равно атмосферному  . При раздувании шара давление гелия  .

Используя выражение для   из пункта (с), выражаем  .

 .

ЧАСТЬ С

править

(e) Условие равновесия шара на высоте  :  .

 . Так как количество гелия в шаре постоянно, то:

 .


    .


Из п.(c):  .

 .

 .


Учтём, что  , след.,  .


Т.к.  ,

где  

то  .

 .

Т.о.,

 .


 .

Из последнего выражения находим

 км.

Атомный зондирующий микроскоп

править

Атомный зондирующий микроскоп (АЗМ) является мощным исследовательским инструментом в области нанофизики. Движение датчика АЗМ регистрируется с помощью фотодетектора, принимающего отражённый луч лазера, как показно на рис.3.1. Датчик закреплён на упругой горизонтальной пластинке и может колебаться только в вертикальном направлении. Его смещение z, зависящее от времени t, описывается уравнением  

                                                                           ,

где m – масса датчика,   - коэффициент упругости пластинки, b – малый коэффициент затухания, удовлетворяющий условию  ,


F - внешняя сила, действующая на датчик со стороны пьезоэлемента.

 


Рис.3.1 Упрощённая схема атомного зондирующего микроскопа (АЗМ). В правом нижнем углу показана упрощённая механическая модель, описывающая принцип работы датчика и его связь с пьезоэлементом.




ЧАСТЬ А

править

(a) [1.5 балла] Если   то зависимость z(t), удовлетворяющая уравнению (3.1), имеет вид  , где A>0 и  . Получите выражения для амплитуды A и тангенса фазы tan _Ф_ через параметры  . Найдите значения амплитуды A и фазы _Ф_ на резонансной частоте  .

(b) [1 балл] Электронное устройство, показанное на рис. 3.1, перемножает входной сигнал и опорный сигнал  , и выделяет в качестве выходного сигнала только постоянную составляющую произведения обоих сигналов. Допустим, входной сигнал задаётся формулой  , где   и   являются заданными положительными константами. Найдите условие для w (>0), при котором на выходе появляется отличный от нуля сигнал. Получите выражение для величины выходного сигнала (постоянной составляющей произведения) на заданной частоте  .

(c) [1.5 балла] Пройдя через фазовращатель, опорный сигнал, напряжение которого зависит от времени по закону  , приобретает вид  . Это напряжение   подаётся на пьезоэлемент, который создаёт силу  , приложенную к датчику. Затем фотодетектор преобразует смещение датчика _z_ в напряжение  . В этих соотношениях   и   - известные константы,   - входной сигнал. Получите выражение для постоянной составляющей выходного сигнала при частоте опорного сигнала  .

(d) [2 балла] Малое изменение массы датчика   приводит к сдвигу его резонансной частоты на величину  , в результатае чего фаза входного сигнала _Ф_ на первоначальной резонансной частоте   испытывает сдвиг на величину  . Найдите изменение массы датчика  , при котором сдвиг фазы оказывается равным  , что типично для фазовых измерений. Значения физических параметров датчика следующие:   кг,   Используйте следующие приближенные формулы:

  и   при  

ЧАСТЬ B


Далее рассмотрите поведение устройства, включая все силы, действующие на датчик, описанные в части А, а также дополнительную силу со стороны образца ( рис. 3.1), рассмотренную ниже.

(e) [1.5 балла] Считайте, что дополнительная сила  , действующая на датчик со стороны поверхности образца, зависит только от расстояния   между концом датчика и поверхностью образца. Зная эту силу, можно найти новое положение равновесия датчика  . Вблизи этого положения   можно приблизительно записать  , где   – коэффициент, не зависящий от  . Найдите новую резонансную частоту колебаний датчика   и выразите её через величины  .

(f) [2.5 балла] Остриё датчика, несущее электрический заряд  , движется горизонтально над поверхностью и проходит над электроном с зарядом  , расположенным (локализованным в пространстве) на некотором расстоянии под поверхностью образца. В ходе сканирования вблизи электрона максимальный сдвиг резонансной частоты   оказывается значительно меньше  . Получите выражение для расстояния   от острия датчика до локализованного электрона, при котором сдвиг частоты будет максимальным. Выразите это расстояние через параметры   и постоянную закона Кулона  . Рассчитайте расстояние   в нанометрах (1 нм = 1x10-9 м) для сдвига частоты  . Параметры датчика следующие:   кг,   Н/м. Любыми поляризационными эффектами как для датчика, так и для образца следует пренебречь. Физические постоянные равны   H x м2/Кл2,   Кл.

Ответы к задаче Атомный зондирующий микроскоп

править

Часть А

править

(a)  

 

С учётом  

 

 

Т.к.  , то

 

и

 .

При   :

 

и

 .


(b)  

Постоянная составляющая сигнала будет отлична от нуля только при

 

и будет равна

 .


(c) Используем результаты, полученные в пункте (a) для A и   при  . Учтём также, что  . Получим выражение для  :  

Откуда   и  . Т.к.  , то постоянная составляющая сигнала

 .


(d) Резонансная частота  . При малом изменении массы датчика на   резонансная частота сдвинется на  .

 

   кг.

Часть B

править

(e)  

 .

Теперь уравнение колебаний датчика записывается так:  

Появление постоянной силы   приводит только к смещению положения равновесия. А слагаемое   можно учесть, введя новый коэффициент упругости  . Тогда новая резонансная частота колебаний датчика

 .



(f) Сила взаимодействия датчика с электроном  , где r – расстояние между датчиком и электроном. Сдвиг частоты будет максимальным, когда датчик проходит над электроном. В этом случае сила f направлена, как показано на рисунке 3.2. При небольшом смещении датчика в направлении оси z от положения равновесия приращение силы  . Так как  , а  , то  .

 .

  нм.