Трудные темы курса классической механики/Силовые поля: различия между версиями

Содержимое удалено Содержимое добавлено
Выделение раздела в статью
(нет различий)

Версия от 14:59, 19 января 2014

Силовые поля

В макроскопических масштабах современной физике известны два вида полей: поле гравитации и поле электромагнитное. Но, поскольку магнитные силы сводятся к движению в системе отсчёта наблюдателя зарядов (т.е. к токам), создающих в общем случае переменное электрическое поле, в качестве пробных объектов для измерения этих полей используется либо масса  , либо масса , несущая заряд  

Для детального описания силового взаимодействия тел в физике повсеместно принята стратегия первоначального рассмотрения задачи в наиболее упрощенной - дифференциальной форме, позволяющей отвлечься от учёта размеров взаимодействующих объектов и расстояния между ними, а затем переходу к суммированию полученных результатов в интегральной форме с учётом реальной геометрии явления. Справедливость такого подхода основана на экспериментально установленном законе независимости сил, действие каждой из которых на объект не зависит от действия на него других сил. Следствием этого является правило параллелограмма, используемое для векторного сложения нескольких сил различного направления и величины.

Чрезвычайно популярным в Физике является понятие о физической точке, т.е. о таком объекте, размеры которого настолько малы, что могут не приниматься во внимание, но остальные его параметры, в первую очередь масса, имеют реальную и достаточную для их учёта величину. В разделе Физики - Оптике тот же смысл вкладывается в понятие о точечном объекте, т.е. об объекте, угловые размеры которого   из точки его наблюдения не превышают заданной малой величины. Для грубых оценок достаточно, чтобы поперечные размеры объекта не менее, чем в 10 раз были меньше расстояния его наблюдения т.е. (  <<0,1 рад ). Для более точных оценок эта величина составляет 0,01 рад и менее.

В современной физике принята концепция близкодействия, в соответствие с которой всякое действие на расстоянии должно осуществляться при помощи тех или иных посредников. В роли этого посредника выступает силовое поле, порождаемое обоими телами.

Возможна ситуация, что массы взаимодействующих тел (или же их заряды) существенно отличаются друг от друга по своей величине. В таком случае может оказаться, что появившееся в их окрестности третье тело будет испытывать взаимодействие с первым, независимо от изменения свойств второго, которое может и вообще исчезнуть. Это будет свидетельством того, что в исходном случае второе тело, рассматриваемое изначально как объект взаимодействия, своим присутствием с заданной степенью приближения не влияет на поле первого тела и потому может рассматриваться как «пробный объект», служащий как для обнаружения поля источника силы, так и его количественной оценки.

Экспериментально установлено, что Третий закон Ньютона «сила противодействия равна силе действия» выполняется не только при непосредственном контакте взаимодействующих тел. Открытый Ньютоном Закон всемирного тяготения отражает реально существующее и фундаментальное свойство Природы, в которой существует действие на расстоянии. В простейшем случае он может быть сведён к взаимодействию только двух тел, любое из которых, удобства ради, может рассматриваться как источник силы, а второе - как объект её воздействия. В случае гравитации эти тела взаимодействуют непосредственно своими массами, а в случае, если взаимодействие носит электрический характер, то к этому добавляется и взаимодействие несущих их зарядов. Но, поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения.

Электростатическое поле (поле неподвижных зарядов)

Применительно к электростатическому взаимодействию двух «точечных зарядов » используется закон Кулона. В скалярном представлении закон Кулона для двух взаимодействующих зарядов записывается следующим образом:

  =  

Здесь   есть сила взаимодействия первого и второго заряда, считающаяся положительной, если заряды отталкиваются   и   есть, соответственно, первый и второй заряды, взятые алгебраически (с их знаком),   -расстояние между ними, а   — коэффициент пропорциональности.

Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются).

Закон Кулона определяет взаимодействие двух неподвижных точечных заряда в воздухе. В физическом вакууме действие закона Кулона не проверялось. Поэтому использование Закона Кулона для модели строения атома Резерфорда и модели электромагнитного поля Максвела является некорректным.

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент   = 1 и, как правило, опускается.

В СИ      Н м^2 / Кл^2 Поскольку электростатическое поле создаётся и уединённым электрическим зарядом, целесообразно ввести для его (поля) количественного описание понятие о его напряжённости .

Напряжённость   электростатического поля заряда   измеряется силой  , с которой оно действует или действовало бы на единичный заряд, находящийся на расстоянии   от этого заряда :

  =  

Напряженность поля есть вектор , направленный по линии, соединяющей заряды в сторону, соответствующй направлению действующей между зарядами силе. Если заряды находятся в материальной среде, то в ней под действием создаваемого ими поля наблюдается процесс поляризации её электически нейтральных молекул , благодаря чему нарушается симметрия входящих в их состав зарядов и молекулы приобретают дипольный моиент, создающий дополнительное поле, складывающееся с собственным полем зарядов. Это эффект учитывается введением представления о диэлектрической постоянной среды  , вводимый в знаменатель формулы.

Гравитационное поле

Применительно к гравитационному взаимодействию двух «точечных масс» используется закон Всемирного тяготения Ньютона.

В скалярном представлении этот закон для двух взаимодействующих масс в любой среде записывается следующим образом:

  = 


Здесь   есть сила взаимодействия первой и второй массы,   и   есть, соответственно, первая и вторая массы,   -расстояние между ними, а

  — фундаментальная гравитационная постоянная, равная   м³/(кг с²) Знак минус означает, что сила, действующая на тела, всегда направленной в сторону сближения тяготеющих тел.

Для описания интенсивности поля тяготения термин "напряжённость" поля не используется. Вместо него используется термин "Ускорение свободного падения", которое по аналогии с электрическим полем вычисляется по формуле:

 =  

Это- тоже вектор, направленный в сторону притягивающего тела.

Между гравитационными и электрическими силами существует, как считал Эйнштейн, связь. Об этом говорит квадратичный характер зависимости интенсивностей его полей. Существует мнение, что именно это предопределяет трёхмерность пространства, в котором происходят все физические явления.

Электромагнитное поле, постоянное во времени (поле постоянных токов)

Силовое взаимодействие между электрическими зарядами, не находящимися в движении относительно друг друга описывается законом Кулона. Однако заряды, находящиеся в движении относительно друг друга создают магнитные поля, посредством которых созданные движением зарядов токов в общем случае приходят в состояние силового взаимодействия.

Принципиальным отличием силы, возникающей при относительном движении зарядов от случая их стационарного размещения, является различие в геометрии этих сил. Для случая электростатики сил взаимодействия двух зарядов направлена по линии, их соединяющей. Поэтому геометрия задачи двумерна и рассмотрение ведётся в плоскости , проходящей через эту линию.

В случае токов сила, характеризующая магнитное поле, создаваемое током, расположена в плоскости, перпендикулярной току. Поэтому картина явления становится трёхмерной.Магнитное поле, создаваемое бесконечно малым по длине элементом первого тока, взаимодействуя с таким же элементом второго тока, в общем случае создаёт силу, действующую на него. При этом для обех токов эта картина полностью симметрична в том смысле, что нумерация токов произвольна.

Закон взаимодействия токов используется для эталонирования постоянного электрического тока.Он является следствием закона Био-Савра-Лапласа, устанавливающего зависимость величины вектора магнитной индукции от силы тока, текущего по проводнику, и расстояния до точки наблюдения. Взаимодействие магнитных полей двух проводников проявляется в виде силы, стемящейся изменить взаимное расположение проводников. В случае, если проводники параллельны друг другу и по ним текут токи   и  , а сами проводники находятся на расстоянии   , то элемент длины первого проводника  действует на элемент длины второго проводника   и наоборот с силой:

  =    ,

где в системе Си коэффициент   =   Н /А^2

Электромагнитное поле (общий случай)

Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представимое как совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга.

Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.

В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компоненты напряжённости электрического поля и три компоненты напряжённости магнитного поля (или — магнитной индукции)[1], а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.

Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.

Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.

Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной (электромагнитными волнами)[2]. Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.