Теория музыки для математиков/Уровни музыкальных рассуждений: различия между версиями

м
Правки Mxmmel (обсуждение) откачены к версии 88.82.80.98
Нет описания правки
м (Правки Mxmmel (обсуждение) откачены к версии 88.82.80.98)
'''Культурный.''' Несмотря на то, что все люди – Homo Sapiens, в разных культурах возникают различные музыкальные традиции. Различия наблюдаются как между этносами (или суперэтносами – говорят о западно-европейской музыке, славянской музыке, и т.д.), так и между различными уровнями развития общества (отсутствие четких понятий о высоте в древности, напевание одного определенного звука–устоя, возникновение все более сложных ладовых систем). Даже звукоряд в разных культурах разный, например, некоторые восточные народы делят полутон на более мелкие интервалы.
 
'''Математический.''' Математика является вполне подходящим средством для описания музыкальных моделей. Могут ли чисто математические результаты иметь интересную интерпретацию в музыке является для автора спорным. Пифагор, по распростаненной версии, пытался свести всеобщую гармонию к числам. Мы же будем к таким идеям подходить более [[осторожно]].
 
Как обычно – четких границ между уровнями нет. Одно и то же явление может простираться через несколько уровней. Почему, например, интервал октава звучит для человека очень приятно? Можно представить это как аксиому биологического уровня, а можно свести к физическому: звуки, различающиеся по частоте вдвое, дают то же множество обертонов, что и нижний из них. Поэтому они практически сливаются. А математически октава описывается числом 2, которое является наименьшим простым числом. На любом уровне, однако, существуют явления, несводимые к предыдущему уровню.
3210

правок