Руководство по защите от пыли
Руководство по защите от пыли при добыче и переработке полезных ископаемых
Dust Control Handbook for Industrial Minerals Mining and Processing
- Министерство здравоохранения и социальных служб США (The United States Department of Health and Human Services)
- Центры по сдерживанию заболеваний (Centers for Disease Control)
- Национальный институт охраны труда (National Institute for Occupational Safety and Health)
- Отдел исследований в области безопасности (Division of Safety Research)
2012
Авторы: Эндрю Секала, Эндрю О’Брайен, Джозеф Чал, Джей Колинет, Уильям Фокс, Роберт Франта, Джерри Джой, Рандольф Рид, Патрик Ризер, Джон Раундс и Марк Шульц
(Andrew B. Cecala, Andrew D. O’Brien, Joseph Schall, Jay F. Colinet, William R. Fox, Robert J. Franta, Jerry Joy, Wm. Randolph Reed, Patrick W. Reeser, John R. Rounds, Mark J. Schultz)
Управление по исследованиям в области безопасности и санитарии при добыче полезных ископаемых (Office of Mine Safety and Health Research)
Питтсбург, Пенсильвания - Спокан, Вашингтон
Январь 2012
- См. также переводы документов NIOSH:
Персональный шахтёрский пылемер PDM (2006)
Лучшие способы снижения запылённости в угольных шахтах (2010)
Защита шахтёров США от угольной пыли (2011)
Отчёт специалистов NIOSH о разработке воздушного душа для защиты шахтёров от пыли
Это документ является общественным достоянием, и может свободно копироваться и распространяться
This document is in the public domain and may be freely copied or reprinted. Ссылка на файл PDF на русском языке
Правовая оговорка:
Упоминание любой компании или продукции не означает, что её услуги или продукция одобряются Национальным институтом охраны труда (NIOSH). Кроме того, ссылки на интернет-сайты (за исключением сайта Института NIOSH)не означают, что NIOSH одобряет финансирование организаций или их программ, или продукции. Также NIOSH не несёт ответственности за содержание этих сайтов. Все ссылки на сайты, имеющиеся в этом документе, были действительны на момент его публикации.
Доступ к информации:
- Для получения документов, относящихся к охране труда и технике безопасности, свяжитесь с NIOSH:
- Телефон 1-800-CDC-INFO (1-800-232-4636); TTY 1-888-232-6348; e-mail cdcinfo<собока>cdc.gov
- или посетите сайт Института охраны труда NIOSH: www.cdc.gov/niosh
Для ежемесячного получения новостей от Института, подпишитесь на рассылку электронных новостей (NIOSH eNews), посетив www.cdc.gov/niosh/eNews.
DHHS (NIOSH) Publication No. 2012–112
Список сокращений
править- AASHTO American Association of State Highway and Transportation Officials – американская организация, разрабатывающая требования к дорогам, их проектированию, строительству и испытаниям.
- ACGIH American Conference of Governmental Industrial Hygienists – Американская ассоциация государственных промышленных гигиенистов, объединяющая специалистов в области промышленной гигиены, разрабатывает ПДК вредных веществ и др.
- AEK airflow extensible Kraft – пористая воздухопроницаемая крафт-бумага, используемая для изготовления мешков для фасовки продукции.
- AIRRS Air ring seal – динамическое противопылевое бесконтактное уплотнение места прохождения бура через буровую платформу с помощью обдува зазора струями сжатого воздуха.
- ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers – организация, объединяющая специалистов в области вентиляции, кондиционирования и отопления.
- ASTM American Society for Testing and Materials - американская международная добровольная организация, разрабатывающая и издающая стандарты для материалов, продуктов, систем и услуг.
- B&BCD bag and belt cleaning device – устройство, которое очищает наружную поверхность заполненных мешков и поверхность конвейерной ленты от пыли после того, как мешки наполнены материалом и отправлены по ленточному конвейеру к месту укладки на паллеты. Благодаря этой очистке снижается запылённость при последующей укладке мешков и др.
- BHP brake horsepower – мощность, потребляемая вентилятором с учётом его КПД.
- CBR California Bearing Ratio - Калифорнийская проверка несущей способности (материала, используемого для создания грунтовых дорог, в данном случае - для перевозки полезных ископаемых внедорожными самосвалами). При проверке цилиндр вдавливается в материал, фиксируется усилие.
- CEMA Conveyor Equipment Manufacturers Association – объединение ведущих изготовителей оборудования для перемещения материалов в Северной Америке http://www.cemanet.org/.
- CFR Code of Federal Regulations - сборник основных постановлений и приказов органов федеральной исполнительной власти США.
- DSH Dust Suppression Hopper – устройство для снижения запылённости при погрузке сыпучего материала в ёмкость. Состоит из бункера-накопителя, который накапливает не непрерывно поступающий материал, а потом высыпает его - сплошной струёй, что уменьшает вовлечение окружающего воздуха в движение падающего материала.
- EPA Environmental Protection Agency - Агентство по охране окружающей среды.
- ESP Electrostatic precipitator – промышленный электрофильтр.
- FIBC Flexible Intermediate Bulk Container - мягкий контейнер (биг-бэг / big-bag) - мешок большого размера и грузоподъемности, имеющий стропы-петли.
- FK flat Kraft - стандартная крафт-бумага для изготовления бумажных фасовочных мешков.
- HEPA high-efficiency particulate air (filter) – высокоэффективный противоаэрозольный фильтр, улавливает не менее 99.97% частиц размером 0.3 мкм.
- HVAC heating, ventilation, and air-conditioning – отопление, вентиляция и кондиционирование воздуха.
- IP Inch Pound – система единиц измерения, используемая в США, и основанная на единице измерения длины дюйм (25.4 мм) и фунт (0.454 кг). Так как исходные формулы были написаны в этой системе, при переводе отдельно приводится оригинальная формула, и отдельно – формула, полученная из оригинальной при использовании системы СИ (метр килограмм).
- LEV local exhaust ventilation – местная вытяжная вентиляция, местный отсос.
- MERV minimum efficiency reporting value – комплексный показатель эффективности улавливания пыли фильтровальным материалом, учитывает эффективность для 3 диапазонов размеров частиц.
- MLV modified low-velocity - Модифицированная низкоскоростная вентиляционная система, в которой начальный вертикальный участок служит для улавливания крупных частиц за счёт очень низкой скорости воздуха, а остальные схожи с обычными высокоскоростными системами.
- MSD musculoskeletal disorder – заболевания опорно-двигательного аппарата
- MSDS Material Safety Data Sheet – паспорт безопасности, документ с описанием свойств вредного вещества.
- MSHA Mine Safety and Health Administration - Управление по охране труда и промышленной безопасности в горной промышленности.
- NIOSH National Institute for Occupational Safety and Health – Национальный институт охраны труда.
- NISA National Industrial Sand Association - торговая ассоциация, представляющая крупнейших североамериканских производителей и переработчиков промышленных песка (http://www.sand.org/).
- NK natural Kraft – стандартная крафт-бумага для изготовления бумажных фасовочных мешков.
- OASIS overhead air supply island system – автономная фильтрующая вентиляционная система, подающая чистый воздух на рабочее место сверху – “воздушный душ”.
- OSHA Occupational Safety and Health Administration – Управление по охране труда в Минтруда США.
- PF protection factor – коэффициент защиты, отношение концентраций; снаружи (закрытой кабины) к концентрации в кабине оператора; или концентрации пыли при не использовании средства снижения запылённости к концентрации при его использовании.
- PEL - permissible exposure limit - Предельно допустимая концентрация, ПДК.
- PM particulate matter – аэрозоли, в настоящем Руководстве – преимущественно твёрдые частицы.
- PSE particle size efficiency – средняя эффективность улавливания частиц определённого диапазона размеров.
- PTFE polytetrafluoroethylene – политетрафторэтилен, фторопласт-4.
- SOP standard operating procedure – правила выполнения работ.
- SP static pressure – статическое давление (воздуха в вентиляционной системе)
- TP total pressure – полное давление воздуха в вентиляционной системе.
- TSP total suspended particulates – (концентрация) всех частиц пыли, находящихся в воздухе, включая средне- и крупнодисперсные, не-респирабельные частицы.
- TWA time-weighted average – средняя по времени концентрация (например – среднесменная для 8-часовой смены)
- USBM United States Bureau of Mines – Горное Бюро, предшественник MSHA (см. выше).
- VP velocity pressure – скоростной напор воздушного потока (ρν2/2).
СОКРАЩЕНИЯ ЕДИНИЦ ИЗМЕРЕНИЯ
- acph air changes per hour – кратность воздухообмена за час.
- cfm cubic feet per minute – кубических футов в минуту – объёмный расход ~ 28.3 л/мин = 1.7 м3/час.
- cfm/ft2 cubic feet per minute per feet squared – кубических футов (28.3 л) в минуту на квадратный фут (9.3 дм) = 3.05 л ̸ (дм*мин) = 0.183 м3/(дм*час) = 18.3 м3/(м2*час)
- fpm feet per minute – футов в минуту, скорость ~ 0.305 м/мин ~ 18.3 метров в час.
- ft feet – фут, длина 304.8 мм.
- ft2 feet squared – квадратный фут = 9.3 дм = 0.093 м2.
- ft/min feet per minute – футов в минуту, скорость ~ 0.305 м/мин ~ 18.3 метров в час.
- gal/yd2 gallons per square yard – галлонов на квадратный ярд (~0.836 м2)
- gpm gallons per minute – галлонов (1 галлон США – сухой – 4.405 л, жидкий – 3.785 л) в минуту.
- gr/cf grains per cubic foot – гран (1 гран ~64.8 мг) на кубический фут (~28.3 л) ~ 2.288 мг/л.
- gr/dscf grains per dry standard cubic foot – гран на один кубический фут (газа) при стандартных условиях (давление 1 атм = 101.325 Па, температура 60° F = 15.6° С) при нулевой относительной влажности.
- kg/m3 kilograms per cubic meter – килограмм на кубометр.
- lb pounds – фунт, вес ~ 0.45 кг.
- lbs/hour pounds per hour – фунтов в час
- lbs/min pounds per minute – фунтов в минуту
- μg/m3 micrograms per cubic meter – микрограмм (10-6 грамм) на кубометр.
- μm micrometers – микрометр, микрон, 0.001 мм.
- mg/m3 milligrams per cubic meter – миллиграмм (10-3 грамм) на кубометр.
- mm millimeters – миллиметр.
- NPT national pipe taper – трубная коническая резьба.
- pH potential of hydrogen - водородный показатель.
- psi pounds per square inch – давление в фунтах на квадратный дюйм ~6.895 кПа.
- psig pound-force per square inch gauge – относительное давление (по отношению к атмосферному), выраженное в psi (1 psi = 6.895 Па). То есть давление (например - в ёмкости) 100 psig (698.5 кПа) означает, что абсолютное давление равно 100 psi + 14.7 psi (атмосферное давление 101.3 кПа) = 114.7 psi (799.8 кПа).
- RPM revolutions per minute – оборотов в минуту, об/мин.
- scfm standard cubic feet per minute – кубический фут (газа) в стандартных условиях (давление 1 атм = 101.325 Па, температура 60° F = 15.6° С) при нулевой влажности – в минуту.
- TPH tons per hour – тонн в час.
- wg water gauge – водяной столб, например – измерение давления в высоте водяного столба (1 мм wg = 9.8 Па)
См. также: Коэффициенты для перевода единиц измерения (National Institute of Standards and Technology) http://physics.nist.gov/Pubs/SP811/appenB9.html
Благодарности
В разработке этого руководства приняли участие следующие лица, перечисленные в алфавитном порядке:
- Роджер Бриз Roger Bresee, Vice President, Technical Services, Unimin Corporation, Peterborough, Ontario, Canada;
- Крис Брайан Chris Bryan (ушёл на пенсию), C.M.S.P., Occupational Health & Safety Manager, U.S. Silica Company, Berkeley Springs, WV;
- Роберт Кастелан Robert M. Castellan, M.D., M.P.H., Expert—Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health;
- Синтия Фарие Cynthia Farrier, Graphics Specialist, National Institute for Occupational Safety and Health;
- Кристофер Финдлэй Christopher Findlay, C.I.H., C.M.S.P., U.S. Department of Labor, Mine Safety and Health Administration, Arlington, VA;
- Ян Фёрт Ian Firth, Principal Adviser—Occupational Health, Rio Tinto Limited, Bundoora, Victoria, Australia;
- Марион Молчен Marion Molchen, Molchen Photography, Washington, PA;
- Ян Матмански Jan Mutmansky, Ph.D., P.E., Professor Emeritus, Pennsylvania State University, University Park, PA;
- Кеннет Вопал Kenneth Vorpahl (на пенсии), C.I.H. (1973-2009), C.S.P. (1976-2009), General Manager/Safety & Health, Unimin Corporation, Winchester, VA;
- Ричард Вуд Richard Wood, International Union of Operating Engineers, National HAZMAT Program, Beaver, WV.
Об этом руководстве
правитьЭто пособие появилось в результате успешных совместных усилий правительства США и промышленности в направлении защиты здоровья шахтёров и людей, работающих на перерабатывающих предприятиях. Основной вклад в создание руководства внесли Отдел исследований в области техники безопасности и охраны труда в горном деле (Office of Mine Safety and Health Research OMSHR) Национального института охраны труда (NIOSH); и промышленная ассоциация Industrial Minerals Association–North America (IMA-NA). Отдел техники безопасности и охраны труда (OMSHR) в NIOSH занимается предотвращением несчастных случаев и профзаболеваний путём проведения исследований и профилактики, а IMA-NA представляет компании, занятые добычей и переработкой минеральных полезных ископаемых.
Руководство было написано группой специалистов по технике безопасности, охране труда, профессиональным заболеваниям, и инженерами (перечислены ниже) для того, чтобы собрать и представить проверенные технологии и методы снижения воздействия пыли на людей, используемые на всех стадиях добычи и переработки минеральных полезных ископаемых. В документе описаны и сами технологические процессы, которые приводят к загрязнению воздуха пылью, и способы снижения воздействия пыли на рабочих. Применение технических средств коллективной защиты, описанных в руководстве, поможет работодателям, специалистам по охране труда и рабочим добиться конечной цели – предотвратить развитие необратимых и неизлечимых профессиональных заболеваний (пневмокониоза, силикоза) и других заболеваний, возникающих при воздействии пыли (хроническая обструктивня болезнь лёгких тоже неизлечима).
Руководство предназначено в первую очередь для работодателей, занимающихся добычей и переработкой минеральных полезных ископаемых, и в нем подробно описаны методы снижения запылённости на всех этапах добычи и обработки сырья, в том числе: при бурении, дроблении, просеивании, перемещении, упаковке, погрузке и перевозке. Руководство создавалось для того, чтобы помочь людям, работающим в горной промышленности, использовать современные методы снижения запылённости (с помощью эффективных средств коллективной защиты), чтобы уменьшить или (полностью) устранить воздействие пыли на рабочих при опасных концентрациях. Такое предотвращение – главный способ сбережения здоровья американских рабочих.
Со-председатели комитета целевой группы (task force)
- Эндрю Секада Andrew B. Cecala, Senior Research Engineer Dust Control, Ventilation, and Toxic Substances Branch, NIOSH
- Эндрю О’Брайен Andrew D. O'Brien, C.S.P., General Manager/Safety & Health Unimin Corporation
Члены комитета
- Джей Колинет Jay F. Colinet, Senior Scientist Dust Control, Ventilation, and Toxic Substances Branch, NIOSH
- Уильям Фокс William R. Fox, Manager/Safety & Health Unimin Corporation
- Роберт Франта Robert J. Franta, Quotation Engineer Spraying Systems Co.
- Джерри Джой Jerry Joy, C.I.H., C.S.P., Research Scientist—Industrial Hygienist Dust Control, Ventilation, and Toxic Substances Branch, NIOSH
- Рандольф Рид Wm. Randolph (Randy) Reed, Ph.D., P.E., Research Mining Engineer Dust Control, Ventilation, and Toxic Substances Branch, NIOSH
- Патрик Ризер Patrick W. Reeser, Engineering Manager U.S. Silica Company
- Джон Раундс John R. Rounds, Director Project Engineering Unimin Corporation
- Марк Шульц Mark J. Schultz, P.E., Senior Mining Engineer Pittsburgh Safety and Health Technology Center (PS&HTC), Dust Division, Mine Safety and Health Administration (MSHA)
Редактор
- Джозеф Чал Joseph Schall, Health Communications Specialist, NIOSH
Подготовка оригинал-макета
- Жанна Зиммер Jeanne A. Zimmer, Physical Science Technician, Dust Control, Ventilation, and Toxic Substances Branch, NIOSH
IMA-NA одготовка оригинал-макета
- Марк Эллис Mark G. Ellis, President IMA-NA
Предисловие к переводу
правитьВНИМАНИЕ, перевод сделан без консультации со специалистами в области добычи и переработки полезных ископаемых, и может быть неточен. Во всех сомнительных случаях обращайтесь к первоисточнику.
Из-за несовершенства используемых технологий добыча и переработка полезных ископаемых часто сопровождается образованием пыли, попадающей в воздух. Вдыхание такой пыли может привести и нередко приводит к развитию необратимых и неизлечимых профессиональных заболеваний – силикоза, пневмокониоза[V- 1], и др. Поэтому для сбережения здоровья рабочих используются различные методы профилактики вдыхания пыли – изменение технологии; герметизация оборудования; автоматизация процесса; эффективная вентиляция и, наконец, средства индивидуальной защиты – противоаэрозольные респираторы.
Однако огромный опыт, накопленный специалистами промышленно-развитых стран показал, что использование СИЗ органов дыхания является не только самым последним, но и самым ненадёжным средством профилактики профессиональных заболеваний – по сравнению с использованием более надёжных средств коллективной защиты[V- 2][V- 3]. К сожалению, в СССР и в РФ по ряду причин практически не проводились измерения реальной эффективности СИЗОД, и на основании чисто лабораторных проверок бытует противоположная точка зрения.
В РФ в течение последней четверти века отмечается неуклонное ухудшение условий труда. Даже по официальным данным доля людей, работающих во вредных и опасных условиях, составляет 1/3 от числа всех работающих (2014)[V- 4], и нет никаких причин для изменения этой тенденции. В этих условиях для защиты здоровья рабочих широкое применение нашли именно СИЗ, и их использование стимулируется государством (расходы на закупку СИЗ компенсируются за счёт обязательных отчислений в Фонд Социального Страхования, до 20%). Принят закон о специальной оценке условий труда 426-ФЗ, который допускает снижение класса вредности при обеспечении рабочих СИЗ – что предполагает, что использование СИЗ позволяет устранить воздействие вредных производственных факторов на рабочего.
Однако эти мероприятия проводятся в условиях, когда из-за отсутствия государственных научно-обоснованных требований к выбору СИЗОД изготовители и продавцы систематично и значительно завышают эффективность своей продукции (точнее – товара), тем самым провоцируя потребителя закупать те виды респираторов, которые заведомо не способны обеспечить надёжную защиту рабочих. Например, при подземной добыче полезных ископаемых широко используются респираторы-полумаски – а СИЗОД такой конструкции считаются специалистами наименее эффективными по сравнению со всеми другими (полнолицевыми масками, респираторами с принудительной подачей воздуха под лицевую часть)[V- 5]. Замеры в производственных условиях показали, что при их непрерывной носке возможно просачивание неотфильтрованного воздуха через зазоры между маской и лицом до 45% - и их продолжают выдавать для работы при запылённости, порой превышающей 1 грамм на м3 (ПДКрз при отсутствии кварца – 10 мг/м3).
Более того, выполнение тяжёлой физической работы в сложных условиях, нередко при повышенной температуре, и необходимость общаться для выполнения работы, не позволяют использовать СИЗОД своеввременно – вообще. Негативное влияние на рабочего (повышенное сопротивление дыханию, снижение концентрации кислорода и повышение концентрации углекислого газа во вдыхаемом воздухе, повышенные температура и влажность вдыхаемого воздуха, давление на лицо и др.) также стимулируют рабочего не использовать СИЗОД, а субъективные ощущения органов чувств не всегда позволяют определить, что запылённость превышает ПДКрз.
Использование заведомо недостаточно эффективных СИЗОД в условиях, не позволяющих применять их своевременно - не может обеспечить профилактику профзаболеваний. Но они большей частью не выявляются и не регистрируются. Например, в Ростовской области в 2012г было выявлено 66 случаев профзаболеваний[V- 6], в то время как в Новой Зеландии в том же году (при схожей численности населения) - 17÷20 тысяч. Не-выявление заболеваний приводит к отсутствию ответственности работодателя, не принимающего должных мер к улучшению условий труда, и к полному отсутствию ответственности изготовителей СИЗОД, декларирующих в рекламных целях сверхвысокую эффективность своей продукции (например, в США научно обоснованные государственные ограничения запрещают применять полумаски при концентрации вредных веществ более 10 ПДКрз, а в РФ ОАО «АРТИ» предлагает полумаску с коэффициентом защиты более 5000...).
В результате ухудшения условий труда (и вопреки широкомасштабному использованию эффективных СИЗ, объём продаж которых за последние годы возрос в 5 раз[V- 7]), смертность среди трудоспособного населения в РФ в 4.5 раз выше, чем в Европейском Союзе, и страна продолжает вымирать в мирное время и при отсутствии стихийных бедствий (природного характера).
В этом документе представлены рекомендации по защите рабочих от вдыхания пыли с помощью средств коллективной защиты, которые используются в США и других развитых странах. Они могут быть полезны при планировании и проведении работ по улучшению условий труда с учётом современного развития науки и уровня техники. Во многих случаях выполнение приведённых рекомендаций позволяет избежать применения СИЗОД (по крайней мере – как основного и единственного средства защиты). Это соответствует конвенции 1977г Международной Организации Труда (№ 148) "Конвенция о защите работников от профессионального риска, вызываемого загрязнением воздуха, шумом и вибрацией на рабочих местах" (ратифицирована РФ), статьи 9 и 10 которой однозначно рекомендует использовать в первую очередь технические средства коллективной защиты, и лишь при их недостаточной эффективности - респираторы.
Формулы для вычислений значений в системе СИ помечены «(СИ)», а исходные формулы (для единиц измерения фунты, футы и т.п.) помечены «(IP)» и выделены курсивом.
См. также:
Рекомендации NIOSH по снижению концентрации пыли в зоне дыхания при подземной добыче угля
Статьи о завышении эффективности СИЗ органов дыхания
Медицина труда и промышленная экология №4/2013
Токсикологический вестник №6/2014
Видеозапись с наглядной демонстрацией неэффективности полумасок:
.
ССЫЛКИ
- ↑ Измеров Н.Ф., Кириллов В.Ф. ред. Гигиена труда. — Гэотар-медиа. — Москва, 2010. — С. 180. — 592 с. — 2000 экз. — ISBN 978-5-9704-1593-1.
- ↑ British Standard BS 4275:1997 «Guide to implementing an effective respiratory protective device programme».
- ↑ Стандарт ФРГ DIN EN 529:2006 Atemschutzgeräte — Empfehlungen für Auswahl, Einsatz, Pflege und Instandhaltung.
- ↑ “ … Смертность трудоспособного населения в РФ превышает аналогичный показатель по Евросоюзу в 4.5 раза, и в 2.5 раза средний показатель по России.
- … на большинстве предприятий сложилась неблагополучная, а нередко критическая ситуация с условиями труда
- … практически каждый третий работник трудится в условиях, не отвечающих санитарно-гигиеническим требованиям.
- … Обеспеченность средствами индивидуальной защиты органов дыхания не превышает 60-79%.
- ... Однако регистрируемый уровень хронической профессиональной заболеваемости не отражает истинной ситуации, связанной с состоянием условий труда на производстве“
- ↑ Кириллов В.Ф., Филин А.С., Чиркин А.В. Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД) // ФБУЗ "Российский регистр потенциально опасных химических и биологических веществ" Роспотребнадзора. Токсикологический вестник. — Москва, 2014. — № 6 (129). — С. 44-49 Wiki PDF. — ISSN 0869-7922.
- ↑
- Проведённые нами исследования выявили следующие тенденции: более ранее присоединение тяжёлых осложнений обусловило и раннюю инвалидизацию шахтёров с профзаболеваниями, срок развития которой от момента постановки первичного диагноза сократился более чем в 60 раз: с 20 лет в 1960-х годах предыдущего столетия до 4 месяцев в настоящее время. ...
- Наконец, за полувековой период почти в 10 раз, с 38 до 4 лет, сократился средний срок дожития шахтёров с момента постановки диагноза профзаболевания ...
- И.H. Пиктушинская. "Медицина труда и экология" (приложение к "Охрана труда. Практикум") №2 2013, №2 2014.
- ↑ Экономика и жизнь, 25.03.2013 За последние пять лет объём приобретаемых в России средств индивидуальной защиты, в рублёвом эквиваленте, вырос в пять раз
Введение
правитьПри добыче и переработке минеральных полезных ископаемых для получения конечного продукта, они дробятся, размалываются, обогащаются, высушиваются, сепарируются по размерам. Эти операции механизированы, и их выполнение может привести к образованию большого количества пыли. При использовании недостаточно эффективных технических средств коллективной защиты, концентрация респирабельной пыли в воздухе может достичь опасного уровня, и создать угрозу для здоровья рабочих. Поэтому федеральное законодательство (США) установило ограничения концентрации пыли, воздействующей на шахтёров. Для уменьшения концентрации пыли и её воздействия на рабочих используют технические средства.
В этом руководстве слово “пыль” используется для обозначения маленьких твёрдых частиц, возникающих при механическом разрушении материала. В зависимости от размера, такие частицы могут стать опасными для здоровья рабочих – особенно при попадании в воздух. Наибольший размер частиц, которые могут попасть в воздух под воздействием ветра ~ 60 мкм. Это примерно соответствует толщине человеческого волоса. Если размер частиц от 60 до 2000 мкм, то они тоже могут попасть в воздух, но высота их подъёма (обычно) не превышает ~0.9 м, и затем они снова падают вниз. А частицы крупнее ~2000 мкм (2 мм) обычно перекатываются или “переползают” с места на место при воздействии ветра[В 1].
Крупные частицы могут воздействовать на носовые проходы, вызывая раздражение и заложенный нос, а при попадании в горло они могут вызвать раздражение и кашель. При вдыхании более опасны частицы пыли меньшего размера, которые могут оставаться в воздухе во взвешенном состоянии часами. В общем, чем меньше аэродинамический диаметр частицы пыли, которую вдохнул человек, тем выше вероятность того, что она сможет глубоко проникнуть в органы дыхания, прежде чем осядет на их стенки.
В развитых странах разработаны методы измерения концентрации пыли, которые позволяют определить – какая доля от уловленной пыли попадает в определённый диапазон аэродинамических диаметров частиц. Например, пробоотборные устройства, измеряющие концентрацию вдыхаемой пыли, улавливают около 97% частиц меньших 1 мкм (аэродинамический диаметр), но только половину частиц диаметром 100 мкм [В 2]. А устройства для измерения концентрации респирабельной пыли более избирательно улавливают такие частицы, которые лучше оседают в той части лёгких, где происходит газообмен. Они улавливают около половины частиц с аэродинамическим диаметром 4 мкм. А эффективности улавливания частиц других размеров – иная: для частиц 10 мкм – около 1%, а для частиц менее 1 мкм – около 97%[В 2]. Такие маленькие частицы – по отдельности – невидимы для невооружённого глаза.
За выполнением требований федерального законодательства США в области техники безопасности и охраны труда при добыче полезных ископаемых следит Управление по охране труда при добыче полезных ископаемых Mine Safety and Health Administration (MSHA). Это Управление, входящее в состав Минтруда США, было создано в соответствии с Законом об охране труда на шахтах 1977г (Federal Mine Safety and Health Act of 1977). Управление имеет полномочия разрабатывать и пересматривать стандарты по охране труда, обязательные для выполнения работодателем, для сохранения жизни и предотвращения несчастных случаев и профзаболеваний шахтёров. Эти требования приводятся в главе 1 раздела 30 свода федеральных законов (Chapter 1 of Title 30, Code of Federal Register CFR). В документе установлены ПДКрз для разных химических веществ (респирабельная пыль), и ограничение 10 мг/м3 для всей пыли по массе. Но если в пыли может быть кварц, то проводится замер концентрации респирабельной пыли, и с помощью рентгеновской дифракции (Аналитический метод NIOSH 7500[В 3]) измеряется содержание кварца в пыли. В респирабельной пыли чаще всего кристаллический кварц встречается в трёх распространённых формах - кварц, тридимит и кристобалит. Если содержание кварца превышает 1%, то ПДКрз по респирабельной пыли вычисляется по формуле:
- ПДКрз (респирабельная пыль) = 10 мг/м3 / (содержание респирабельного кварца [%] + 2)
Выполнение такого ограничения предотвращает воздействие респирабельного кварца при концентрации свыше 100 мкг/м3. Национальный институт охраны труда (NIOSH) рекомендует для респирабельного кварца ПДКрз 50 мкг/м3 для 10-часовой смены и 40-часовой рабочей недели[В 4]. А для тридимита и кристобалита ПДКрз равна половине значения, вычисленного по формуле выше для кварца.
С учётом указанных требований законодательства, при добыче и переработке полезных ископаемых важно определить, когда концентрация респирабельной пыли в зоне дыхания рабочих превышает допустимую, и (в этих случаях) разработать, установить и обеспечить эффективную работу технических средств коллективной защиты, описанных в этом руководстве (если это необходимо). С этой целью Национальная ассоциация производителей и переработчиков промышленных песка NISA недавно опубликовала второе издание "Occupational Health Program for Exposure to Crystalline Silica in the Industrial Sand Industry" [В 5]. В документе приводится информация, необходимая для правильного измерения и оценки воздействия пыли на рабочих.
Вдыхание пыли кварца и возможные последствия для здоровья
правитьКак сообщалось в документе "NIOSH Hazard Review: Health Effects of Occupational Exposure to Respirable Crystalline Silica", вдыхание респирабельной пыли, содержащей кварц, может привести к нескольким серьёзным последствиям для здоровья – развитию силикоза, туберкулёза, хронического бронхита, эмфиземы и хронической почечной болезни[В 6]. Кроме того, по мнению специалистов NIOSH кристаллический кварц является потенциальным канцерогеном[В 6][В 7] 54 Fed. Reg. 2521 (1989)].
Силикоз обычно развивается при вдыхании пыли кристаллического кварца. Это заболевание неизлечимо, необратимо и потенциально смертельно. Кварц является одним из самых распространённых минералов в земной коре, и при проведении многих видов горных работ приходится разрушать породу или руду, содержащую кварц. Поэтому большинство людей, занятых добычей полезных ископаемых, могут подвергаться воздействию кристаллического кварца во время бурения, дробления, сепарации по размерам, перемещения и погрузки.
При вдыхании мелкодисперсной респирабельной пыли, частицы могут проникать глубоко в лёгкие и достигать альвеол. Осевшие в альвеолах частицы кристаллического кварца могут стимулировать воспалительный токсический процесс, который в конечном итоге может перерасти в клинически выраженный силикоз. В зависимости от концентрации респирабельного кристаллического кварца, и длительности его вдыхания, у рабочих может развиться одна из нескольких форм силикоза[В 6]:
- Хронический силикоз – развивается при длительном чрезмерном воздействии кристаллического кварца, и впервые становится клинически заметным после 10-30 лет после первого воздействия;
- Ускоренный силикоз - развивается при воздействии кристаллического кварца при большой концентрации, и впервые становится клинически заметным через 5-10-30 лет после первого воздействия;
- Острый силикоз – развивается при воздействии кристаллического кварца при (необычно) очень большой концентрации кварца, и становится клинически заметным через короткий период времени после первого воздействия – от недель до 5 лет.
Наиболее распространённой формой заболевания является хронический силикоз, который возникает после многих лет вдыхания пыли кристаллического кварца и приводит к образованию характерных узловых рубцов в лёгких. Со временем начальные небольшие узелки могут слиться в большие фиброзные массы, и такое состояние называют прогрессивным массивным фиброзом (ПМФ). Ускоренный силикоз встречается гораздо реже хронического, но развивается гораздо быстрее. Острый силикоз встречается наиболее редко, и это самая серьёзная и самая смертельно опасная форма заболевания. В отличие от хронического и ускоренного силикоза – когда флюорография обычно показывает разбросанные небольшие (и, возможно, также большие) потемнения, при остром силикозе флюорографические снимки показывают его похожим на диффузионную пневмонию. Это проявление объясняется обширным повреждением слизистой оболочки лёгких, из-за которого альвеолы наполняются жидкостью, содержащей белок, разлагающиеся клетки и другие материалы[В 8].
При развитии силикоза не у всех рабочих будут явно выраженные симптомы заболевания. У части людей с хроническим силикозом нет заметных симптомов – несмотря на наличие характерных признаков на флюорографических снимках. Но у многих рабочих с хроническим силикозом симптомы будут развиваться с течением времени, а у тех, кто болен острым или ускоренным силикозом симптомы (могут появится) до того, как будет поставлен диагноз. Хотя силикоз неизлечим, но его разные симптомы – боль в груди, неконтролируемый кашель, одышка - ослабляют больного, и требуют терапии. Кроме того, у больных силикозом выше риск развития туберкулёза и других инфекционных заболеваний[В 6][В 8].
В этом введении показана необходимость снижения воздействия респирабельной пыли кварца на рабочих. Описанные в этом руководстве способы снижения концентрации пыли до ПДКрз применимы не только для пыли кварца, но и для других видов пыли. Хотя это руководство разрабатывалось для использования при снижении запылённости при добыче и переработке полезных ископаемых, но изложенные здесь методы могут использоваться для снижения запылённости и на предприятиях других отраслей.
.
ССЫЛКИ
- ↑ EPA (1996). Air quality criteria for particulate matter, Vol. 1. Research Triangle Park, NC: National Center for Environmental Assessment, Office of Research and Development, Environmental Protection Agency.
- ↑ а б ACGIH [2007]. 2007 Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
- ↑ NIOSH [2003]. NIOSH manual of analytical methods, 4 ed., 3rd supplement. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2003–154.
- ↑ NIOSH [1974]. NIOSH criteria for a recommended standard: occupational exposure to crystalline silica. Cincinnati, OH: U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, DHEW (NIOSH) Publication No. 75–120.
- ↑ NISA [2010]. Occupational health program for exposure to crystalline silica in the industrial sand industry, 2nd ed. Washington, DC: National Industrial Sand Association.
- ↑ а б в г NIOSH [2002]. NIOSH hazard review: health effects of occupational exposure to respirable crystalline silica. By: Schulte PA, Rice FL, Key-Schwartz RJ, Bartley DL, Baron P, Schlecht PC, Gressel M, Echt AS. U.S. Department of Health and :Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2002–129.
- ↑ 54 Fed. Reg. 2521 [1989]. Occupational Safety and Health Administration: air contaminants; final rule; silica, crystalline-quartz. (Codified at 29 CFR 1910.)
- ↑ а б Davis GS [2002]. Silicosis. In: Hendrick DJ, Burge PS, Beckett WS, Churg A, eds. Occupational disorders of the lung: recognition, management, and prevention. W.B. Saunders, pp. 105–127.
ГЛАВА 1. Принципы пылеулавливания
правитьДля снижения концентрации пыли и уменьшения попадания респирабельной пыли в органы дыхания рабочих при переработке минерального сырья в США чаще всего используют технические средства коллективной защиты – пылеулавливающее вентиляционное оборудование. Хорошая вентиляционная система имеет ряд достоинств, и она уменьшает загрязнение воздуха, что повышает производительность труда и сохранение ценного продукта.
При переработке минерального сырья чаще всего используют местные вентиляционные отсосы (local exhaust ventilation systems LEVs). Они улавливают пыль, образующуюся во время разных этапов переработки сырья (дробление, размол, сепарация по размерам, сушка, фасовка, погрузка) и переносят пыль по воздуховодам к пылеуловителям. Улавливая пыль в месте её попадания в воздух, местные отсосы предотвращают загрязнение воздуха рабочей зоны и попадание пыли в органы дыхания рабочих.
Местные отсосы используют создание разрежения в укрытии для улавливания пыли до того, как она попадёт в воздух рабочей зоны. В эффективной вентиляционной системе обычно есть улавливающее приспособление (кожух, укрытие, вытяжка и т.п.), спроектированное так, чтобы улучшить улавливание в максимальной степени.
Использование местных вентиляционных отсосов даёт ряд преимуществ:
- Захват и удаление мелкодисперсных частиц, которые трудно уловить при попадании в воздух;
- Возможность или использовать уловленный продукт в технологическом процессе, или не использовать его так, чтобы он не влиял на процесс;
- Возможность беспрепятственной и стабильной работы при температуре ниже 0°С – что не всегда возможно использовании мокрых методов пылеподавления.
Кроме того, такой способ снижения запылённости может быть единственно возможным в тех случаях, когда улавливаемая пыль гигроскопична, или когда даже при небольшой влажности могут возникнуть проблемы (например – при обработке глины или сланца) и т.п.
В большинстве случаев образование пыли происходит очевидным способом. Каждый раз, когда сухой материал перемещается, обогащается, или перерабатывается, с большой вероятностью может образовываться пыль. А при попадании пыли в воздух, последний становится опасным для здоровья рабочих. Кроме того, при большой концентрации пыли ухудшается обзор, что ухудшает безопасность рабочих.
Обычно образование пыли, требующее использования систем обеспыливания, происходит в 5 случаях:
- В местах перегрузки материала в транспортных системах – когда он падает при передаче от одной части транспортной системы к другой. Например, это происходит при перегрузке с одного ленточного транспортёра на другой, или при сбросе в бункер, или в ковшовый элеватор.
- При дроблении, размалывании, просеве, сушке, смешивании, выгрузке из мешков, погрузке в грузовики и вагоны.
- При выполнении операций, при которых происходит вытеснение воздуха – наполнение мешков, паллетирование или пневматическое заполнение ёмкостей (бункеров и т.п.).
- На открытом воздухе, когда потенциальный источник пыли не может контролироваться, например – при колонковом бурении и взрывных работах.
- На открытом воздухе – на дорогах, складах и других местах с грунтовым покрытием, где происходит перемещение материала, который может быть источником пыли (при разных работах и при сильном ветре).
Хотя в случаях 4 и 5 может образоваться много пыли, они обычно не учитываются при проектировании вентиляционной системы предприятия, так как они охватывают большую территорию и условия (в таких местах) непредсказуемы. Поэтому в таких случаях требуется использовать другие методы, отличающиеся от вентиляции. Они рассмотрены в последних главах этой книги.
Проектирование и применение обеспыливающего оборудования связано с решением нескольких разных технических задач – эффективное использование имеющегося пространства; (определение) расстояния, на которое нужно проводить воздуховоды; учёт того, насколько легко будет использовать уловленную пыль в технологическом процессе; использование электрического оборудования; и выбор подходящих пылеуловителей. Также при проектировании системы обеспыливания нужно решить – какой она будет: одной (централизованной), или в виде нескольких систем для отдельных (групп) источников пыли. При проектировании требуется правильно поставить задачу, для каждого случая выбрать наиболее подходящее оборудование, и для каждого конкретного случая и конкретной операции спроектировать наилучшую пылеулавливающую систему.
В этой главе сделано много ссылок на руководство по проектированию промышленной вентиляции “Industrial Ventilation: A Manual of Recommended Practice for Design”, созданное американской организацией, объединяющей специалистов в области промышленной гигиены ACGIH[1- 1], и в настоящем документе использовано несколько рисунков из этого руководства. Всем, кого интересует защита рабочих от пыли при добыче и переработке минеральных полезных ископаемых с помощью (вентиляционных) пылеулавливающих систем, и особенно инженерам, которые проектируют такие системы, следует считать руководство ACGIH исходным источником информации. А информация, приведённая в этой главе, будет дополнять содержание руководства ACGIH.
Основы работы пылеулавливающих систем
правитьХорошо спроектированная обеспыливающая система должна учитывать не только (свойства) пыли как потенциального загрязнения, но и характерные черты пылеулавливающих систем. При определении свойств пыли как потенциальной угрозы для рабочих нужно ответить на ряд вопросов. Требуется определить: размеры частиц и их распределение по размерам, их форму и физические свойства, и количество пыли, попадающей в воздух. Размеры частиц показывают, насколько пылинки крупные или мелкие, и для этого обычно используют границы диапазона размеров (верхнюю и нижнюю). Размеры частиц обычно измеряют в микронах (1 µм = 1 мкм = 10-6 м = 0.001 мм). Респирабельными частицами, (наиболее) опасными для здоровья рабочих, считают частицы с размером ≤ 10 мкм. Для сравнения, ячейка сетки 325 mesh соответствует частице размером около 44 мкм, и это (примерно) наименьший размер частицы, которую можно увидеть невооружённым глазом. Крупные пылинки гораздо лучше улавливаются пылеулавливающими системами, и в этом часто помогает сила тяжести.
Форма частиц влияет на их улавливание и на то, насколько хорошо они отделяются от (тканевого) фильтровального материала. Форма частиц – это термин, который обычно используется в аэрозольной технологии, а для описания диаметров частиц аэрозоля часто используют термин “аэродинамический диаметр”. Аэродинамический диаметр частицы – это диаметр такой сферической частицы, у которой плотность равна 1000 кг/м3 (стандартная плотность капли воды), и которая оседает в неподвижном воздухе под действием силы тяжести с той же скоростью, что и рассматриваемая частица[1- 2]. Аэродинамический диаметр частиц широко используют при проектировании фильтрующих установок и воздухоочистителей. Кроме этого, при проектировании пылеулавливающей системы важными обстоятельствами, влияющими на выбор пылеуловителя, и на другие части системы, является температура и влажность воздуха.
Поток воздуха и пылеулавливание
правитьДля того, чтобы регулировать потоки воздуха в вентиляционной системе, нужно учитывать расходы воздуха, скорости потоков, температуры, и использовать параметры потоков – статическое давление (SP, Static Pressure) и скоростной напор (VP, Velocity Pressure).
Скорость воздуха измеряется в метрах в секунду (футах в минуту, 1 ф/мин ~ 18.3 м/мин ~ 0.3 м/с). Расход воздуха измеряют в кубических метрах в секунду или в час (кубических футах в минуту, 1 куб фут/мин ~ 28.3 л/мин = 1.7 м3/час) – это количество воздуха, используемого в вентиляционной системе. Температура воздуха измеряется в градусах Цельсия (С) или Фаренгейтера (F). Она используется для определения возможного применимого типа уплотнений и фильтровального материала. Во многих случаях улавливание пыли происходит при высокой температуре воздуха (печи для обжига, доменные печи, сушилки).
При проектировании вентиляционных систем давление обычно измеряют в Паскалях (дюймах водяного столба, 1 дюйм wg = 25.4 мм вод. столба ~ 249 Па). Давлением в вентиляции обычно называют статическое давление, создаваемое вентилятором. Статическое давление равно разнице между давлением в воздуховоде и атмосферным давлением. Отрицательное статическое давление (разрежение) стремится сжать стенки воздуховода, а избыточное – раздвинуть.
Статическое давление используется для преодоления сопротивления вентиляционной системы (Hl, head loss), которое складывается из двух частей – сопротивления трения в воздуховодах и соединениях (Hf, frictional losses), и местных сопротивлений отдельных частей системы - таких, как циклоны и пылеуловители (Hx, shock losses)[1- 3]. Для измерения статического давления используют трубку Пито, которую вставляют в воздуховод параллельно боковой стенке, что позволяет определить отличие между атмосферным давлением и давлением в воздуховоде (Рис. 1.1).
При движении в воздуховоде с определенной скоростью, воздух создаёт дополнительное скоростное давление – динамическое давление, или скоростной напор (Velocity Pressure VP). Динамическое давление – это давление, которое требуется для того, чтобы разогнать покоящийся воздух до заданной скорости. Оно существует только тогда, когда воздух движется, и направлено в сторону его движения. Значение скоростного напора всегда положительно. Для измерения скоростного напора в вентиляции используют пробоотборный зонд, помещаемый в поток воздуха. Сумма статического давления и динамического давления равна полному давлению (Total Pressure TP)[1- 3]:
- TP = SP + VP (Уравнение 1.1) (СИ, IP)
- где TP = полное давление;
- SP = статическое давление; и
- VP = скоростной напор, или динамическое давление. Единицы измерения – Па (или дюймы вод. столба).
В руководстве ACGIG “Industrial Ventilation: A Manual of Recommended Practice for Design”[1- 1], приводится ряд определений и уравнений, которые используются для описания движения воздуха в воздуховодах вентиляционной системы. В этом руководстве также подробно описаны параметры воздуха, движущегося в вентиляционной системе и выбрасываемого из неё. А в руководстве Martin Engineering, Foundations: The Practical Resource for Cleaner, Safer, More Productive Dust & Material Control[1- 4], тоже есть глава, посвящённая измерению движения воздуха, и раздел об эффективном измерении расхода воздуха. Наконец, можно рекомендовать статью в журнале "Dust Control System Design: Knowing your Exhaust Airflow Limitations and Keeping Dust out of the System"[1- 5].
Проектирование вытяжной вентиляционной системы
правитьВсе – простые и сложные – вытяжные вентиляционные системы состоят из схожих составных частей: укрытия (кожуха, вытяжного зонта), воздуховодов, пылеуловителя и вентилятора (Рис. 1.2). В руководстве ACGIH “Industrial Ventilation: A Manual of Recommended Practice for Design”[1- 1], подробно рассмотрены все аспекты таких систем. Для того, чтобы дополнить упомянутое руководство, ниже рассмотрены некоторые из основных параметров вентиляционных систем, используемые при проектировании, и более подробно рассмотрены некоторые из упомянутых аспектов. В дополнение к руководству ACGIH, в настоящем документе рассмотрены некоторые из основных параметров, используемые при проектировании, и проблемы, связанные с использованием воздуховодов при большой и при маленькой скорости запылённого воздуха.
Укрытия, вытяжные зонты
правитьУкрытия (кожухи, вытяжные зонты) конструируются так, чтобы они соответствовали свойствам перерабатываемой руды или продукта. Хорошо сконструированное укрытие является важной частью обеспыливающей вентиляционной системы, так как если оно не сможет обеспечить улавливание пыли, то остальные части системы станут бесполезны. Если укрытие хорошо сконструировано, то оно создаёт поток воздуха с таким расходом и таким направлением движения, что тот захватывает пыль и переносит её в вентиляционную систему. Эффективность укрытия оценивается по его способности побуждать запылённый воздух двигаться в сторону всасывающего отверстия воздуховода в производственных условиях.
Отличия при выдувании струи воздуха по отношению к всасыванию воздуха
правитьРассматривая эффективность укрытий вытяжной вентиляционной системы, нужно учесть ограничения такой системы, то есть - ограниченные возможности местных отсосов улавливать загрязнённый воздух. Это наиболее наглядно проявляется при сравнении свойств потоков воздуха, всасываемого и выдуваемого из воздуховода. Поток воздуха, выдуваемый из отверстия воздуховода (после вентилятора) продолжает двигаться в первоначальном направлении на большом расстоянии от отверстия. Например, при выдувании из круглого отверстия трубы диаметром D, на удалении 30 D от отверстия скорость в центре потока снижается до ~10% от первоначальной (Рис. 1.3). Струя выдуваемого воздуха стремится принять цилиндрическую форму, и вовлечь в движение окружающий воздух (этот процесс обычно называют индукцией). А при всасывании воздуха, его скорость становится равной 10% от скорости в поперечном сечении всасывающего отверстия на расстоянии всего лишь одного диаметра отверстия.
При всасывании воздух стремиться двигаться в сторону всасывающего отверстия воздуховода - со всех сторон, и “струя” всасываемого воздуха имеет примерно сферическую форму – в отличие от конической при выдувании. Другое важное отличие относится к снижению скорости воздуха с увеличением расстояния до отверстия. Скорость воздуха снижается до ~10% в центре струи выдуваемого воздуха на расстоянии 30 диаметров от отверстия; а при всасывании – всего лишь на расстоянии один диаметр. Это показывает, насколько важно для проектирования эффективного укрытия приблизить его к источнику пыли.
Типы укрытий, зонтов
правитьСуществуют разнообразные конструкции всасывающих частей вентиляционной системы, и обычно их можно разделить на три типа: кожух (укрытие); улавливающий вытяжной зонт (capturing hood); и принимающее вентиляционное отверстие (receiving hood).
Укрытие – это кожух, который частично или полностью закрывает источник пыли, что обеспечивает такой характер движения воздуха, что пыль уносится в вентиляционную систему и предотвращается её попадание в окружающий воздух. Самый лучший способ улавливания пыли – использование такого кожуха, который полностью закрывает источник пыли. Количество отверстий в кожухе сводится к минимуму за счёт устройства дверей и люков, обеспечивающих требуемый доступ к источнику пыли. Такие укрытия обычно используются тогда, когда доступ к оборудованию, которое является источником пыли, при нормальной работе не требуется, а открывание отверстий происходит, например, при начальной загрузке сырья, и при конечной выгрузке продукции. Такие типы укрытий используют при добыче и переработке полезных ископаемых, чаще всего – при дроблении, размоле, просеивании, разделении по размерам.
Когда требуется доступ к технологическому оборудованию или месту образования пыли, то часто используют неполное укрытие - будку или туннель. В этом случае важно обеспечить отсасывание такого количества воздуха, чтобы удалить пыль, попадающую в воздух, или хотя бы свести к минимуму её утечку из укрытия. Лучше всего это получается, если (удаётся) закрыть источник пыль как можно более полно. Для этого часто используют прозрачные пластиковые полосы, которые позволяют рабочим входить и выходить, но достаточно эффективно изолируют источник пыли от окружающего пространства. При использовании неполного укрытия (туннеля) требуется больший расход воздуха, чем при использовании кожуха, полностью закрывающего источник пыли.
В тех случаях, когда невозможно использовать полное или частичное укрытие, обычно используют улавливающие вытяжные зонты, которые устанавливают как можно ближе к источнику пыли. Так как источник пыли находится вне такого устройства, то для обеспечения эффективной работы вентиляционной системы крайне важно, чтобы вытяжной зонт смог уловить, засосать запылённый воздух. Он должен справиться с любым внешним движением воздуха, стремящимся унести запылённый воздух в сторону. Если пыль образуется в каком-то определённом месте, и удаётся приблизить устройство к этому месту на небольшое расстояние, то подобные вытяжные зонты могут быть очень эффективны,. Скорость движения воздуха в сторону улавливающего местному отсосу обратно пропорциональна квадрату расстояния от зонта. Когда это расстояние становится слишком большим, он становится неэффективным, и нужно изучить возможность использования сдувающе-всасывающей (push-pull) вентиляционной системы (Рис. 1.4). В сдувающе-всасывающей вентиляционной системе выпускаемая струя воздуха увлекает за собой окружающий воздух так, чтобы создать поток, преодолевающий большое расстояние до улавливающего отверстия вентиляционной системы. Сопло, выпускающее сдувающую струю воздуха, обычно размещают прямо напротив источника пыли, и направляют в сторону улавливающего отверстия. Движение выпущенной струи воздуха в сторону улавливающего отверстия вовлекает в движение окружающий загрязнённый воздух. Это делается для того, чтобы весь движущийся воздух попал в улавливающее отверстие. Сочетание такого сопла, выпускающего струю воздуха, с улавливающим вентиляционным отверстием, позволяет получить хорошую эффективность вентиляционной системы.
Третий, самый редко используемый тип – принимающее вентиляционное отверстие (Рис. 1.5). Обычно он размещается близко к месту образования пыли, и не позволяет ей разлетаться в окружающее пространство. В большинстве случаев такие принимающие вентиляционные отверстия делают небольшими по размеру. При улавливании пыли они используют инерцию частиц для уменьшения требуемой скорости воздуха. Принимающие вентиляционные отверстия редко используют при добыче и переработке минеральных полезных ископаемых, и часто – в небольших установках и инструментах, используемых на заводах и в лабораториях.
Конструкция укрытия, зонта
правитьСамыми главным параметрами конструкции укрытия являются:
- Расход воздуха, всасываемого вентиляционной системой через него.
- Положение.
- Форма.
Из трёх этих параметров, расход воздуха через укрытие является самым важным. Как упоминалось ранее, если укрытие не обеспечивает улавливание пыли, то остальная часть вентиляционной системы становится бесполезной. А при недостаточном расходе воздуха укрытие не может предотвратить распространение пыли за его пределы – в окружающий воздух. Чтобы внутри укрытия сохранялось достаточное разрежение, для новых укрытий, у которых зазоры меньше, требуется меньший расход воздуха, чем для старых укрытий, у которых зазоры больше. Из-за этого объёмный расход воздуха (м3/час) у одинаковых источников пыли может сильно отличаться – хотя улавливание пыли может быть достаточно хорошим во всех случаях.
В таблице 1.1 приводятся приблизительные значения расхода воздуха, при котором обеспечивается предотвращение утечек пыли от перечисленного оборудования.
Оборудование | Расход воздуха, м3/час [cfm] |
---|---|
Ковшовый элеватор – хорошо герметизированный | По 680 [400] вверху и внизу элеватора |
Ковшовый элеватор – хорошо герметизированный | 1360 [800] только вверху элеватора |
Ременной конвейер | 1700-2550 [1000-1500] на каждом месте перегрузки |
Медленно двигающееся колеблющееся сито | 510-850 [300-500] вытяжка |
Быстро двигающееся вибрирующее сито | Длина периметра уплотнения × 425 (1/м) [ × 250 1/ft] |
Сито | 510-850 [300-500] на каждом месте выгрузки материала |
Загрузочное выпускное отверстие | 1360-2038 [800-1200] |
Бункер для хранения материала | 510-680 [300-400] |
Вытяжные зонты, навесы | 4570 на каждый м2 площади занавеси вокруг навеса [ 250 cfm на каждый кв фут ] |
При использовании значений расхода воздуха, указанных в таблице 1.1, нужно учитывать то, что при подаче материала в бункер он увлекает туда за собой дополнительный воздух, и этот дополнительный расход воздуха должен учитываться для получения того расхода воздуха, который требуется отсасывать из бункера во время его заполнения.
Для обеспыливания другого оборудования (например – фасовочные, упаковочные машины, дробилки, магнитные сепараторы, паллетайзеры и т.п.) можно использовать тот расход воздуха, который рекомендуется их изготовителем. В некоторых случаях могут возникнуть противоречия между необходимостью установить укрытие, хорошо закрывающее пылящее оборудование и позволяющее предотвратить распространение пыли, и необходимостью обеспечить доступ к оборудованию для его обслуживания и во время работы. В таких редких случаях может потребоваться установить в укрытие всё оборудование, например – путём размещения вытяжного зонта над оборудованием и подвески гибкой занавеси по периметру вытяжки.
При определении расхода отсасываемого воздуха нужно учесть два обстоятельства – вовлечение воздуха в движение и скорость захвата частиц.
Вовлечение воздуха в движение
Вовлечение воздуха в движение происходит тогда, когда материал, падая вниз, передаёт импульс окружающему воздуху (Рис. 1.6). Из-за этой передачи энергии поток воздуха всегда движется вместе с падающим материалом. Например, при подаче песка в элеватор по жёлобу, песок будет увлекать за собой воздух (в элеватор). Этот воздух нужно удалить из корпуса (кожуха) элеватора с помощью вытяжной вентиляции, или же он найдёт другой выход, сделав элеватор источником загрязнения воздуха предприятия.
Для приближённой оценки того, какой расход воздуха нужен для компенсации вовлечения воздуха в движение материалом, можно использовать уравнение, учитывающее расход материала, высоту свободного падения, размер кусков материала и площадь поперечного сечения приёмного отверстия:
- Q = 0.1157 × Au × (R × S2 / D)1/3 (м3/с) = 416.5 × Au × (R × S2 / D)1/3 (м3/час) (Уравнение 1.2) (СИ)
- Q = 10 × Au × (R × S2 / D)1/3 (Уравнение 1.2) (IP)
- (коэффициенты 0.1157 и 416.5 используется вместо коэффициента 10 для исходных данных в метрах и кг/сек; а коэффициент 10 – для исходных данных в футах и тоннах/час)
- где Q = расход воздуха м3/сек, м3/час [cubic feet per minute];
- Au = площадь отверстия в укрытии, через которое в него подаётся материал, м2 [square feet];
- R = расход подаваемого материала, кг/сек [тонн в час];
- S = высота падения материала, м [feet]; и
- D = средний размер кусков материала, м [feet].
Самым важным параметром в этом уравнении является Au – площадь отверстия, в которое подаётся материал, через которое входит вовлекаемый в движение воздух (площадь поперечного сечения приёмного отверстия). Чем меньше площадь отверстия, тем меньше Au, и тем меньше требуемый расход удаляемого воздуха. Также, чем меньше высота падения материала S, тем меньше нужно отсасывать воздуха. При проектировании оборудования, которое будет перемещать материал, важно уменьшить значения S и Au до минимально возможных, чтобы предотвратить чрезмерное пылеобразование и снизить расход воздуха у вентиляционной системы. Значения расхода подаваемого материала R и среднего размера кусков материала D тоже влияют на требуемый расход воздуха, но при добыче или переработке полезных ископаемых они обычно постоянны.
Расход воздуха (Q) для вытяжки тоже можно оценить с помощью определения вовлечения воздуха в движение. Это важно учитывать, так как стандартные таблицы или графики могут не учитывать некоторые факторы, влияющие на необходимое количество отсасываемого воздуха. Нужно проводить вычисления с учётом вовлечения воздуха в движение, и сравнивать результат с опубликованным стандартным (внося поправки, если это кажется необходимым).
Скорость захвата частиц
Скорость захвата частиц (capture velocity) – это показатель того, какой расход воздуха требуется для захвата частиц, выходящих из источника, и их перемещения во входное отверстие вентиляционной системы. Скорость захвата должна быть достаточно большой для того, чтобы преодолеть все препятствующие (захвату) факторы, и внешнее движение окружающего воздуха. Опубликованы различные таблицы со значениями такой скорости для разных условий. При добыче и переработке полезных ископаемых диапазон таких скоростей обычно составляет 0.5-1.0 м/с [100-200 футов/мин], но в некоторых случаях может возрасти до 2.5 м/с [500 футов/мин]. В большинстве случаев значения скорости захвата были получены на основании многолетнего опыта эксплуатации различного оборудования в разных условиях.
После определения скорости захвата вычисляется соответствующий расход отсасываемого воздуха. Ниже приводится уравнение "DallaValle", применяемое для определения расхода воздуха для свободно стоящих укрытия и источника пыли (Рис. 1.07)[1- 6][1- 7]:
- Q = 1 × Vx × (10 × X2 + Ah) (м3/с) = 3600 × Vx × (10 × X2 + Ah) (м3/час) (Уравнение 1.3) (СИ)
- Q = 1.0 × Vx (10 × X2 + Ah) (Уравнение 1.3) (IP)
- (коэффициенты 1 и 3600 используется вместо коэффициента 1 при использовании метров и метров в секунду, а 1.0 – при использовании футов и футов/мин)
- где Q = расход отсасываемого воздуха, м3/с, м3/час [куб футов/мин];
- Vx = скорость воздуха, требуемая для захвата частиц в наиболее удалённом от укрытия, м/с [фут/мин];
- X = расстояние от укрытия до наиболее удалённого места захвата пыли, м [фут]; и
- Ah = площадь поперечного сечения отверстия укрытия, м2 [кв. футов].
Уравнение показывает, что скорость воздуха, размер отверстия укрытия и расстояние от укрытия до источника пыли влияют на требуемое количество отсасываемого воздуха. Очень важно расстояние до источника пыли (Х), так как оно влияет на расход во второй степени.
Также нужно отметить, что при использовании свободно стоящего укрытия воздух всасывается в него не только со стороны источника пыли, но и с противоположной стороны, и с боковых сторон. Это уменьшает способность укрытия захватывать и удалять пыль из места её образования. Для уменьшения влияния всасывания ненужного воздуха есть несколько способов. Во-первых, если укрытие находится на (какой-то) поверхности, то необходимый расход воздуха снижается:
- Q = 1 × Vx (5 × X2 + Ah) (м3/с) = 3600 × Vx (5 × X2 + Ah) (м3/час) (Уравнение 1.4) (СИ)
- Q = 1.0 × Vx × (5 × X2 + Ah) (Уравнение 1.4) (IP)
(коэффициенты 1 и 3600 используется вместо коэффициента 1 при использовании метров и метров в секунду, а 1.0 – при использовании футов и футов/мин)
Другой способ – сделать фланцы по периметру отверстия укрытия, тогда расход вычисляется так:
- Q = 0.75 × Vx (10 × X2 + Ah) (м3/с) = 2700 × Vx (10 × X2 + Ah) (м3/час) (Уравнение 1.5) (СИ)
- Q = 0.75 × V (10 × Х2 + Ah) (Уравнение 1.5) (IP)
((коэффициенты 0.75 и 2700 используется вместо коэффициента 0.75 при использовании метров и м/сек, а 0.75 – при использовании футов и футов/мин))
Фланцы препятствуют всасыванию ненужного воздуха в укрытие сзади и с боков, и это крайне простая модификация конструкции укрытия для повышения его эффективности и снижения эксплуатационных расходов. В руководстве ACGIH Industrial Ventilation: A Manual of Recommended Practice for Design[1- 1] можно найти информацию о других факторах, влияющих на скорость захвата.
Другие параметры укрытия
правитьКогда пыль захватывается и всасывается в вентиляционную систему, при входе воздуха в неё происходит преобразование статического давления в динамическое и в потери из-за местного сопротивления укрытия. Уменьшение давления из-за местного сопротивления при входе в вентиляционную систему вычисляется с помощью уравнения:
- He = (K)(VP) = SPh = VP (Уравнение 1.6) (СИ, IP)
- где He = уменьшение давления из-за местного сопротивления входа в воздуховод, Па, [дюймы водяного столба];
- K = коэффициент сопротивления;
- VP = скоростной напор (динамическое давление) в воздуховоде, Па [дюймы водяного столба]; и
- SPh = абсолютное статическое давление в воздуховоде на расстоянии около 5 диаметров от входного отверстия, Па [дюймы водяного столба].
При входе воздуха в воздуховод происходит изменение давления, которое нужно вычислить для учёта влияния каждого их укрытий в той системе, где их несколько. На Рис. 1.8 показаны коэффициенты сопротивления для трёх разных конструкций укрытий, широко используемых при добыче и переработке полезных ископаемых. В первом ряду показаны три вида всасывающих отверстий по форме – круглое, квадратное и прямоугольное, и их коэффициент сопротивления. Во втором ряду показаны те же всасывающих отверстия с фланцами, и их коэффициент сопротивления. В третьем ряду показана конструкция круглого входного отверстия с плавным, закруглённым, колоколообразным (bell mouth) входом, и коэффициент сопротивления. Видно последовательное улучшение конструкции и соответствующее уменьшение сопротивления и потерь давления.
Контрольный список вопросов для оценки эффективности местного вентиляционного отсоса
правитьНиже приводится список контрольных вопросов для определения того, насколько выбранная конструкция местного отсоса соответствует наилучшим рекомендуемым специалистами.
- Наиболее эффективный местный отсос должен улавливать всю поступающую пыль. Это практически полностью устраняет загрязнение окружающего воздуха и вдыхание пыли рабочими.
- Нужно свести к минимуму количество и размеры отверстий в кожухе (двери, люки и т.п.). Если же доступ необходим, нужно изменить конструкцию укрытия так, чтобы оборудование находилось в камере/туннеле. Если отверстия для доступа нельзя закрывать, их можно изолировать с помощью полос прозрачного пластика.
- Если нельзя сделать кожух, закрывающий оборудование полностью или частично, нужно использовать улавливающий вытяжной зонт, и он должен размещаться как можно ближе к источнику пыли. Учтите, что расстояние до источника пыли влияет на расход воздуха во второй степени.
- Скорость захвата, создаваемая местным вентиляционным отсосом, должна быть способна преодолевать любое движение окружающего воздуха между источником пыли и всасывающим отверстием.
- Если расстояние между источником пыли и всасывающим отверстием слишком велико, или если окружающий воздух движется слишком быстро, нужно рассмотреть возможность использования сдувающее-всасывающей схемы вентиляции.
- Важно, чтобы свежий воздух, поступающий в укрытие после того, как туда войдёт рабочий, был не загрязнён пылью. Если будет всасываться воздух из загрязнённой области, то рабочий может дышать респирабельной пылью. При всасывании запылённого воздуха он никогда не должен проходить через зону дыхания рабочего.
- Используйте фланцы на всасывающем отверстии, так как они значительно увеличивают количество воздуха, всасываемого спереди – со стороны источника пыли. Оптимально использование всасывающих отверстий со скруглёнными краями.
- Нужно проверить, чтобы все конструкции местных вентиляционных отсосов соответствовали критериям, установленным в руководстве ACGIH Industrial Ventilation: A Manual of Recommended Practice for Design[1- 1].
Воздуховоды и скорость воздуха
правитьДля перемещения запылённого воздуха от источника пыли к пылеуловителю могут использоваться три вида вентиляционных систем: с большой скоростью воздуха, с маленькой скоростью воздуха, и модифицированная с маленькой скоростью воздуха. В промышленности хорошо знакомы с высокоскоростной системой, где скорость воздуха составляет 15-23 м/с [3,000–4,500 fpm]. В сущности, это пыле-собирающая система, в то время как низкоскоростная вентиляционная система является пыле-улавливающей (скорость воздуха не более 9 м/с [1,800 fpm]. Если вентиляционная система низкоскоростная, то она не может переносить крупные, не-респирабельные частицы (обычно больше 10 мкм). Учтите, что маленькая скорость воздуха не означает маленький расход воздуха. Скорость захвата у местного вентиляционного отсоса и расход воздуха одинаковы для всех видов вентиляционных систем (присоединённых к местному отсосу) – высокоскоростной, низкоскоростной, и модифицированной низкоскоростной. На Рис. 1.9 показаны основные отличия между высокоскоростной и низкоскоростной системами.
Рисунок показывает, что в высокоскоростной системе пыль будет перемещаться в любом случае – при любом наклоне воздуховода. А при использовании низкоскоростной системы воздуховоды должны быть наклонены или в сторону всасывающего отверстия, или в сторону места выгрузки пыли, так как некоторые крупные частицы, непреднамеренно втянутые в поток удаляемого воздуха, будут оседать в воздуховодах, и их нужно удалять из них.
Высокоскоростная вентиляционная система
правитьОсновным свойством высокоскоростной системы является её способность переносить запылённый воздух, содержащий частицы крупнее 10 мкм, от всасывающего отверстия до пылеуловителя, не допуская при этом осаждения пыли в воздуховодах. Для предотвращения осаждения частиц требуется большая скорость воздуха.
Так как воздуховоды такой системы могут размещаться и вертикально, и горизонтально, то их несложно разместить. Это позволяет спроектировать эффективные вентиляционные системы, в которых обычно используется центральный горизонтальный воздуховод и воздуховоды меньшего диаметра, соединяющие центральный воздуховод с местными вентиляционными отсосами и источниками пыли.
Главный недостаток высокоскоростной системы – то, что частицы пыли, двигаясь с большой скоростью, истирают стенки воздуховода, особенно в местах изменения направления движения воздуха. Больше всего изнашиваются повороты и места присоединения ответвлений. Если при проектировании или техобслуживании не принять специальных мер, то произойдёт разрушение воздуховодов, в них образуются отверстия. Поэтому большую часть труб и поворотов нужно делать из более прочных материалов, и повороты делать с большим радиусом. Такой износ увеличивает трудозатраты и расход материалов на техобслуживание. У любой вентиляционной системы с отверстиями в воздуховодах снижается эффективность в месте всасывания загрязнённого воздуха, и даже одно-единственное отверстие может сильно повлиять на работу системы. Так как работа высокоскоростной вентиляционной системы зависит от её техобслуживания, то она не всегда может работать с приемлемой эффективностью.
Если воздуховоды расположены горизонтально, а воздух влажный, и расход воздуха не адекватный, то при эксплуатации возникают дополнительные проблемы. При выключении вентилятора пыль оседает на горизонтальных участках воздуховодов. Если температура воздуха опускается ниже точки росы, на поверхности воздуховодов может образовываться конденсат, что приводит к закреплению пыли на стенках, и трубы постепенно “заростают”. Со временем это приводит к уменьшению расхода воздуха через систему из-за увеличения сопротивления движению воздуха, и увеличения скорости воздуха в более узких местах. Уменьшение расхода воздуха уменьшает эффективность улавливания пыли, а увеличение скорости воздуха увеличивает скорость истирания стенок и может привести к изнашиванию системы скорее, чем можно ожидать.
Наконец, для получения большой скорости воздуха нужно, чтобы в системе был большой перепад давления. Это требует большего расхода энергии, что увеличивает эксплуатационные расходы. Также, хотя начальные расходы на изготовление и установку воздуховодов высокоскоростной системы невелики, повышенные расходы на техобслуживание и эксплуатацию приводят к большим затратам за период эксплуатации системы.
Низкоскоростная вентиляционная система
правитьНизкоскоростная вентиляционная система создаёт такое же разрежение в месте всасывания запылённого воздуха, и обеспечивает такой же расход удаляемого воздуха от источника пыли к пылеуловителю, что и высокоскоростная вентиляционная система. Отличие между ними в том, что после всасывания запылённого воздуха в низкоскоростной системе скорость перемещаемого воздуха значительно меньше. Поэтому трубы такой системы всегда делают наклонными для того, чтобы слишком большие частицы (осевшие в них) могли соскользнуть в места выгрузки для облегчения их удаления. При проектировании скорость воздуха выбирается такой, чтобы обеспечивать перенос только респирабельной пыли (обычно меньше 10 мкм). Такая мелкодисперсная пыль переносится медленно движущимся потоком воздуха, а более тяжёлые частицы оседают в воздуховодах и соскальзывают в места выгрузки.
Поэтому у низкоскоростной системы нельзя делать воздуховоды с горизонтальными участками. Воздуховоды (могут проектироваться так, чтобы) осевшая пыль использовалась повторно. Вместо длинных горизонтальных воздуховодов могут использоваться пилообразные (sawtooth design), Рис. 1.10. Для регулирования расхода воздуха используют диафрагмы – пластины с отверстиями, сужающими поток и создающими дополнительное сопротивление. Их лучше устанавливать на нисходящем участке так, чтобы не улавливался материал (пыль) за высокоскоростным потоком воздуха в отверстии.
Способность низкоскоростной системы переносить пыль ограничивается частицами, меньшими 10 мкм. Из-за отсутствия более крупных частиц, и из-за меньшей скорости воздуха, абразивный износ воздуховодов в такой системе меньше даже в тех местах, где воздух изменяет направление движения. Это позволяет использовать повороты небольшого радиуса или угловые соединения – без интенсивного износа.
При проектировании вентиляционной системы размер воздуховодов подбирается с учётом ожидаемой потери давления в системе. Потери возникают из-за трения и потерь давления в пылеуловителях. При уменьшении скорости воздуха потери давления из-за трения в воздуховодах и соединениях уменьшаются, что снижает эксплуатационные расходы энергии.
Из-за того, что воздух движется с небольшой скоростью, можно (умеренно) изменять размеры регулирующего расход отверстия, и при этом не нарушать работу системы полностью. Даже если в какой-то ветке системы сделать отверстие, открыв её, это не приведёт к сильному изменению расходов воздуха в других ветвях, так как изменение давления будет минимальным. Если одна из ветвей системы выйдет из строя, или в ней резко изменится воздушный поток, низкоскоростная вентиляционная система стремится сбалансировать режим работы других ветвей, и они стремятся сохранить эффективность. Поэтому при сохранении эффективного улавливания пыли расход воздуха, удаляемого от двух одинаковых источников пыли, может значительно отличаться. Это уменьшает общие потери вентиляционной системы.
Недостатками низкоскоростных вентиляционных систем являются большие капитальные расходы, и более сложная конструкция. В таких системах способность пропускать требуемое количество воздуха (м3/час) через воздуховоды с заданной скоростью определяет диаметр труб, который значительно больше, чем у воздуховодов высокоскоростной системы. Кроме того, из-за невозможности размещать воздуховоды горизонтально, используют “пилообразную” конструкцию, которая стоит дороже и монтаж которой сложнее.
При проектировании низкоскоростной вентиляционной системы распространённым заблуждением является то, что думают, что из-за маленькой скорости воздуха в воздуховодах не требуется использовать укрытие. Но на самом деле хорошо спроектированное укрытие/вытяжной зонт нужны и для низкоскоростной системы – это помогает снизить потери давления в системе за счёт снижения сопротивления на входе в систему. В сущности, укрытия у низко- и высокоскоростных систем одинаковы. Но все всасывающие отверстия вентиляционных систем должны размещаться на удалении от места падения материала для снижения вероятности его всасывания. Принцип низкоскоростного осаждения пыли (в укрытии) состоит в отсасывании воздуха из хорошо закрытого источника пыли. Это приводит к возникновению разрежения, удерживающего разлетающуюся пыль в укрытии. Форма всасывающего отверстия тоже имеет значение по двум причинам:
- У хорошо спроектированного входного отверстия меньше сопротивление движению воздуха.
- Хорошо спроектированное входное отверстие предотвращает всасывание материала в вентиляционную систему. Даже при использовании низкоскоростной вентиляционной системы в воздуховоды могут попасть крупные частицы. Поэтому важно, чтобы в поперечном сечении входного отверстия скорость воздуха была не выше 1-1.5 м/с [200÷300 fpm] для предотвращения всасывания крупных частиц пригодного к продаже материала.
Наконец, проектирование и размещение низкоскоростной системы требуют больше трудозатрат. Из-за ограничения, не позволяющего размещать участки воздуховодов горизонтально, иногда трудно найти физическое пространство для требуемой пилообразной конструкции воздуховодов. Но хорошо спроектированная низкоскоростная вентиляционная система требует незначительного техобслуживания и не засоряется. Ниже описаны подробности проектирования таких низкоскоростных систем.
Перемещение воздуха со скоростью до 9 м/с
Из-за особенностей низкоскоростной вентиляционной системы при её использовании нет необходимости обеспечивать определённую (конкретную) скорость воздуха в воздуховодах. Но если скорость будет равна желаемой (9.1 м/с [1800 fpm]), то воздух будет переносить большую часть респирабельной пыли (размер частиц до 10 мкм) к пылеуловителю, когда пыль попадает в воздуховоды из оборудования и находится в кожухах, закрывающих источники пыли. Основной целью использования низкоскоростной обеспыливающей вентиляционной системы является сведение к минимуму количества воздушных загрязнений (респирабельной пыли), которое выходит из системы, создавая опасность для здоровья и раздражение. При скорости воздуха 9 м/с в обеспыливаемом оборудовании (или под кожухом) создаётся небольшое разрежение, и обеспечивается отсасывание достаточного количества воздуха для того, чтобы помешать частицам пыли выходить наружу. Такая скорость воздуха и полученное разрежение создают потоки (чистого) воздуха в зазорах, входящие внутрь, а не выходящие наружу (потоки загрязнённого воздуха) в большинстве случаев.
Использование воздуховодов без горизонтальных участков
При использовании маленькой скорости движения воздуха в воздуховодах важно обеспечить отсутствие горизонтальных участков воздуховодов. Причина в том, что крупные частицы, движущиеся в потоке воздуха, могут оседать и прикрепляться к стенкам воздуховода. Это приводит к сужению воздуховодов, увеличению скорости воздуха и ускорению абразивного истирания стенок. Поэтому воздуховоды должны проектироваться так, чтобы наклон участков, где воздух движется вверх, был не менее 45°, а наклон участков, где воздух спускается – не менее 30° (Рис. 1.11). Это позволяет любой частице, попавшей в поток воздуха, соскользнуть к источнику пыли. Это также требует, чтобы во всех нижних точках воздуховодов были приспособления для выпуска накапливающейся пыли – как показано на Рис. 1.10.
Использование коллекторов
При проектировании низкоскоростной системы нужно рассмотреть возможность использования одного или более коллекторов, соединяющих пылеуловитель и выбранные места, находящиеся “в центре” источников пыли. Использование таких коллекторов позволит соединить их с источниками пыли с помощью маленьких ответвлений, и позволит легко присоединить вытяжку у отдельных частей оборудования к обеспыливающей вентиляционной системе. Коллекторы могут быть круглого или прямоугольного поперечного сечения. При недостатке места, использование прямоугольных воздуховодов с большим отличием длины и ширины облегчает размещение коллектора. Эти воздуховоды могут включать много вертикальных участков, находящихся около имеющихся вертикальных стоек, элеваторов и т.п. – вдоль них. Как упоминалось ранее, во всех нижних точках коллектора должны быть приспособления для выпуска пыли, возможно – в ковшовый элеватор.
Уменьшение работы по подгонке на месте установки и сварки
При изготовлении новых вентиляционных систем нужно использовать трубы и другие детали, изготовленные на соответствующих специализированных предприятиях – максимально полно – и при сборке системы на месте использовать готовые части. Сварка или обрезка труб в производственных условиях, на месте сборки, стоят дорого, и при хорошем проектировании системы потребность в сварочных работах можно свести к минимуму. Дополнительные затраты времени на этапе проектирования на проработку конструкции укрытий, вытяжек, воздуховодов и других элементов приносят отдачу при последующей сборке и монтаже системы.
Часто во время монтажа требуется подгонка по месту и т.п., и это нужно учесть до начала сборки. Обрезку и сварку для подгонки воздуховодов по месту при сборке) лучше (планировать так, чтобы они проводились) на концах (стандартных) воздуховодов. Тогда можно использовать воздуховоды заводского изготовления с преднамеренно завышенной длиной. Желательно также использовать воздуховоды с фланцами, установленными на концах труб уже на заводе-изготовителе, а не изготавливать и не устанавливать их на месте. Это предохранит воздуховоды от повреждений при обработке и перемещении, и затем на месте можно будет укоротить трубу до необходимого размера, переместить стык с другой трубой до нового конца воздуховода, при необходимости повернуть его, и прикрепить.
Эффективность и простота монтажа воздуховодов может быть достигнута с помощью использования фланцевых соединений. Фланцевые (и другие) соединения очень доступны, недороги и их удобно устанавливать. Такие соединения должны использоваться во всех укрытиях, частях воздуховодов и др. при заводском изготовлении частей вентиляционной системы. Их использование также позволяет избежать применения дорогостоящих сварочных работ и позволяет легко заменять участки воздуховодов при необходимости.
Избегайте изменения направления больше чем на 90°
Если воздух резко изменяет направление движения больше чем на 90°, то сопротивление резко возрастает и в высокоскоростной вентиляционной системе, и в низкоскоростной системе, Так как потери давления пропорциональны квадрату скорости воздуха, то (суммарная) потеря давления у низкоскоростной системы останется меньше. Но если требуется уменьшить потерю давления и у низкоскоростной системы, то нужно использовать несколько поворотов на небольшие углы.
Определение размеров и мест установки пластин с отверстиями, регулирующих расход воздуха.
Во многих сложных вентиляционных системах для регулирования расхода воздуха используются устанавливаемые в воздуховод пластины с отверстиями, изменяющими перепад давления, необходимый для нормальной работы нижележащего участка воздуховода. Рекомендуется в каждую из ветвей вентиляционной системы установить по одной пластине с отверстием так, чтобы это привело к увеличению перепада давления не менее чем на 500 Па (2 дюйма водяного столба). Это позволит легко увеличить систему в будущем. При добавлении дополнительных ответвлений к системе к коллектору, пластины с отверстиями можно будет заменить на другие – с более крупными отверстиями, создающими меньшее сопротивление и перепад давления.
На Рис. 1.12 показаны неудачные места размещения пластин с отверстиями. Пластины должны размещаться на расстоянии не менее 4-5 диаметров воздуховода до и или 4 диаметра после места изменения направления движения воздуха. Это позволить потоку воздуха стать более ламинарным, и восстановить нормальную скорость. Если пластина находится до поворота и близко к нему, то из-за увеличения скорости в отверстии и поворота усилится абразивный износ наружной стенки воздуховода в месте поворота. Всегда, когда это возможно, пластина должна устанавливаться на секции воздуховода, где воздух движется вниз. Это поможет избежать накопления тяжёлых частиц пыли выше пластины – что может произойти при установке пластины на участке, где воздух движется вверх (так как большая скорость воздуха в отверстии не позволит частицам спуститься вниз).
Также нельзя устанавливать пластины около входных отверстий воздуховодов. Из-за увеличения скорости воздуха в отверстии в воздуховод может попасть нежелательно много материала. Скорость захвата вытяжного зонта должна быть (если это возможно) меньше 2.5 м/с [500 fpm]. При удалении мелкодисперсной шлифовальной пыли желательно ограничить скорость 1 м/с.
Сведите к минимуму использование гибких воздуховодов
В низкоскоростных вентиляционных системах нежелательно использование (по крайней мере – систематичное) гибких воздуховодов. (Их) поломка может нарушить работу ответвлений вентиляционной системы в её остальной части. Гибкие воздуховоды увеличивают сопротивление вентиляционной системы. Если они используются, то их нужно устанавливать между всасывающим отверстием вентиляционной системы и пластиной с отверстием – это сведёт к минимуму последствия при их поломке.
Модифицированная низкоскоростная вентиляционная система
правитьТакие вентиляционные системы должны сочетать достоинства низко- и высокоскоростных систем, и не иметь их недостатков. Главным средством для достижения этой цели является улавливающее пыль укрытие (кожух, вытяжной зонт). Первый участок воздуховода после всасывающего отверстия должен быть вертикальным, а его длина должна быть не менее 1.8 м [6 футов], желательно – 2.4÷3 м [8÷10 футов]. А скорость воздуха в этом вертикальном участке должна быть очень низкой – даже по отношению к обычной низкоскоростной системе (то есть – 5.1÷6.1 м/с [1000÷1200 фут/мин]). Как и в других системах, пыль всасывается, но перемещается только самая мелкодисперсная фракция. (Вертикальный) участок 2.4÷3 м необходим для уменьшения завихрений и получения спокойного ламинарного потока, и для улучшения отделения тяжёлых крупнодисперсных частиц от лёгких в начале воздуховода.
Так как после этого вертикального участка воздуховода количество частиц в воздухе минимально, то поддерживать большую скорость в последующих горизонтальных участках воздуховода – не нужно. Также нет необходимости использовать “пилообразную” конструкцию воздуховодов и делать места для выгрузки уловленной пыли. Скорость воздуха в первом горизонтальном участке после описанного вертикального должна быть около 10 м/с [2000 fpm].
При проектировании модифицированной низкоскоростной системы с коллектором, к которому (будут) присоединяться дополнительные боковые ветви воздуховодов, скорость воздуха в коллекторе после места подсоединения первой боковой ветви нужно увеличить на ~0.51 м/с [100 fpm] (см. Рис. 1.13). Даже при большой длине и большом числе присоединённых боковых вентиляционных ветвей, скорость воздуха в коллекторе скорее всего не превысит 12.7÷15.2 м/с [2500÷3000 fpm]. Из-за маленькой потери давления в такой системе, в ней не требуется делать дорогие воздуховоды для изменения направления движения воздуха, резкие повороты или отводы. Вместо этого можно использовать “коробчатые” повороты (box elbows) и т.п.
У такой модифицированной низкоскоростной системы имеются все достоинства низкоскоростной системы (слабый абразивный износ стенок, небольшие затраты на техобслуживание, низкое энергопотребление, и стабильность режима работы разных частей системы). В то же время нет необходимости использовать пилообразные воздуховоды, занимающие много места. Так как скорость воздуха в воздуховодах меньше, чем в высокоскоростной системе, и больше, чем в низкоскоростной, то диаметр (размер) воздуховодов также будет промежуточным. Другое достоинство этой системы в том, что её легко использовать при расширении или модификации имеющейся высокоскоростной системы. Нужно будет сравнить скорости в местах соединения, с учётом того, что неудобно переходить от большей скорости в воздуховоде к меньшей. Однако можно расширить систему, используя низкоскоростную модифицированную систему. Основные рекомендации по таким системам, которые были даны ранее, применимы и в этом случае, но с некоторыми исключениями.
- Рекомендация избегать горизонтальных участков воздуховодов не нужна.
- Пластины с отверстиями устанавливаются в верхней части первого низкоскоростного вертикального участка воздуховода, а не внизу. Их нужно устанавливать как можно ближе к этому участку.
- Скорость воздуха в вертикальных участках воздуховодов должна быть от 5.1 до 6.1 м/с [1000-1200 fpm].
- Скорость воздуха в горизонтальных участках должна быть не ниже 10.1 м/с [2000 fpm].
Рекомендации по проектированию разветвлённой вентиляционной системы
правитьДля предотвращения попадания пыли в воздух рабочей зоны часто приходится отсасывать загрязнённый воздух от более чем одного устройства, но при этом нередко используется один пылеуловитель и один вентилятор. Это приводит к созданию разветвлённой вентиляционной системы, Рис. 1.13 и 1.25. Так как расстояния от устройств до пылеуловителя редко бывают одинаковы, то сопротивление разных участков воздуховодов различно (см. схему).
Рекомендуется следующий порядок расчёта:
Сначала прорисовывается схема расположения воздуховодов и размещения пылеуловителя и вентилятора. Н рисунке рассмотрен простейший случай с двумя источниками пыли.
Затем выбирается наиболее удалённый источник пыли, и для известного значения расхода воздуха Q1 и допустимой скорости движения воздуха в воздуховодах участка 1 определяется площадь поперечного сечения воздуховода (участок 1). Так как маловероятно, что именно такие воздуховоды изготавливаются промышленностью, нужно определить ближайшие подходящие размеры и выбрать тот, который приемлем с точки зрения допустимой скорости воздуха. Под этот размер воздуховода проводится расчёт новой скорости воздуха. Вычисляется сопротивление всех составных частей участка 1, и определяется статическое давление в узле 1, необходимое для получения требуемого расхода воздуха Q1. Для известного расхода воздуха Q2 и допустимой скорости воздуха в воздуховоде на участке 2 определяется площадь поперечного сечения участка 2. Затем выбирается реально изготавливаемый размер воздуховода, и проводится расчёт сопротивления, скорости воздуха и статического давления в узле 1, необходимого для получения требуемого расхода воздуха Q2 на участке 2.
Маловероятно, что значения статического давления, вычисленные для двух участков, окажутся одинаковы. Простое присоединение воздуховодов приведёт к тому, что из-за меньшего сопротивления участка 2 расход воздуха в нём будет больше ожидаемого, а на участке 1 – меньше. Это может не только не обеспечить защиту от пыли около устройства 1, но и привести к засорению пылью участка 1, что полностью выведет его из строя. Для решения этой проблемы рекомендуется два способа:
- Если статические давления отличаются менее чем на 20%, то поскольку расход воздуха пропорционален квадратному корню из перепада давления, можно оставить всё без измерений. Кроме того, точность вычислений конечна, и сопротивление будет изменяться по мере загрязнения внутренней поверхности воздуховодов.
- Если статическое сопротивление участка 2 меньше, то его можно искусственно увеличить, установив на нём пластину с отверстием. Это повысит сопротивление, и статическое давление для обоих участков в узле 1 станет одинаковым.
- Можно вычислить (заниженный) размер воздуховода для участка 2, при котором расход воздуха от устройства 2 (при статическом давлении в узле 1, соответствующем нормальной работе участка 1) будет равен Q2. То есть, если использовать воздуховоды меньшего диаметра для участка 2, то скорость воздуха там будет выше (при статическом давлении в узле 1, соответствующем нормальной работе участка 1), и сопротивление участка 2 станет соответствовать участку 1.
У второго решения есть недостатки: (1) из-за большей скорости воздуха может происходить абразивный износ воздуховодов, что потребует проводить их ремонт и может ухудшить работу вентиляционной системы; (2) Из-за большей скорости воздуха может происходить всасывание крупных частиц пыли, что увеличит нагрузку на пылеуловитель и риск абразивного износа воздуховодов; (3) при необходимости модифицировать вентиляционную систему (при использовании другого оборудования, установке нового оборудования и т.п.) это будет сложно сделать; (4) реальное сопротивление воздуховодов отличается от вычисленного, и при эксплуатации оно может возрастать из-за осаждении какой-то части пыли на стенках, что увеличивает их шероховатость, а отсутствие регулятора расхода воздуха (пластины с отверстиями) затруднит наладку и коррекцию работы системы.
Рекомендуется использовать пластины с отверстиями.
Для участка 3 расход воздуха равен сумме расходов Q3 = Q1 + Q2. Для приемлемой скорости воздуха проводится расчёт поперечного сечения воздуховода, определяется реально изготавливаемый подходящий диаметр, и для этого размера проводится расчёт скорости воздуха. Определяется сопротивление всех составных частей участка 3, и статичесоке давление в месте присоединения к пылеуловителю. Если есть другие источники пыли, то в узлах присоединения их воздуховодов к уже рассчитанной части вентиляционной системы (более удалённой от пылеуловителя) повторяются действия, описанные для выравнивания статического давления в узле 1.
При выборе вентилятора, соответствующего значениям суммарного расхода воздуха и статического давления, может не оказаться подходящего. Можно выбрать ближайший более производительный, создающий большее статическое давление, и уменьшить расход воздуха и давление с помощью, например, входного направляющего аппарата, закручивающего поток воздуха в сторону вращения рабочего колеса. Это уменьшает производительность без значительного снижения КПД, а регулирование угла установки лопаток направляющего аппарата позволяет регулировать производительность и статическое давление вентилятора.
См также: Внутренние санитарно-технические устройства. Часть 3. Вентиляция и кондиционирование воздуха. Книга 1 (и книга 2 тоже). Справочник проектировщика. Москва, Стойиздат, 1992г. Под ред. Н.Н. Павлова и Ю.И. Шиллера, и др.
Пылеуловители
правитьДля очистки воздуха от загрязняющих его аэрозолей при добыче и переработке минеральных полезных ископаемых используют пылеуловители. Выбор пылеуловителя для любого конкретного случая зависит от:
- Концентрации пыли и её свойств,
- Размеров частиц,
- Требуемой степени очистки,
- Температуры и относительной влажности воздуха, и
- Способа улавливания.
К отличиям в свойствах пыли, влияющим на её улавливание, относят: абразивные свойства, взрывоопасность, липкость, “лёгкость” или “пушистость”. Форма частиц (сферическая регулярная или нерегулярная) тоже имеет значение, так как это влияет на улавливание частиц фильтровальным материалом. С точки зрения эффективного улавливания нерегулярные частицы идеальны, так как они позволяют легко образовывать пористый рыхлый воздухопроницаемый слой уловленной пыли на поверхности фильтровального материала – а этот слой увеличивает эффективность очистки и регенерации без большого роста сопротивления. Но такие частицы могут прочно застревать в самом фильтровальном материале.
Существуют различные пылеуловители – начиная от простейших гравитационных и заканчивая сложнейшими электростатическими; ниже приводится их список:
- Гравитационные пылеуловители (коробки-пылеосадители).
- Центробежные пылеуловители или циклоны.
- Промышленные тканевые рукавные фильтры.
- Промышленные фильтры с картриджами.
- Мокрые пылеуловители.
- Промышленные электрофильтры.
Ниже приводится их краткое описание с указанием достоинств и недостатков.
Гравитационные пылеуловители
правитьГравитационные пылеуловители – это большие камеры, где скорость воздуха сильно уменьшается для того, чтобы позволить частицам пыли осесть под действием силы тяжести. Для этого поток воздуха изменяет направление движения. Воздух входит в пылеуловитель горизонтально, и сразу отклоняется прямо вниз пластиной (Рис. 1.14). При снижении скорости воздуха и его отклонении вниз сила тяжести осаждает крупные, тяжёлые частицы, а мелкие (лёгкие) частицы продолжают двигаться вместе с воздухом и не улавливаются.
Достоинствам гравитационных пылеуловителей является то, что они требуют незначительного техобслуживания, и уменьшают нагрузку на главный пылеуловитель. Но они занимают много места, и у них низкая эффективность очистки.
Центробежные пылеуловители или циклоны
правитьДля улавливания пыли в циклонах используется центробежная сила. Для этого в них входящий поток воздуха закручивается по спирали. При этом принудительном изменении направления движения частицы пыли из-за инерции стремятся сохранить первоначальное направление движения, что приводит к их отделению от потока воздуха (Рис. 1.15). Хотя по конструкции и работе это простые устройства, в них происходят сложные процессы. Для их упрощённого объяснения можно сказать, что внутри циклона образуется два вихря. Главный спускается вниз, и он несёт тяжёлые частицы (к бункеру-пылесмборнику). А в нижней части циклона возникает внутренний вихрь, который поднимается вверх и уносит из циклона лёгкие частицы.
Циклоны требуют мало обслуживания, и по соотношению стоимость/эффективность являются хорошими пылеуловителями. Они тоже могут использоваться для снижения запылённости воздуха, поступающего на главный пылеуловитель, и позволяют повторно использовать сухой уловленный продукт. Однако предсказать их параметры трудно, при их проектировании возникает ряд проблем, и они занимают много места.
Циклоны плохо улавливают лёгкую мелкодисперсную пыль. Обычно их используют для предварительной очистки для удаления крупных частиц, которые могут повредить фильтровальный материал или засорить мокрые пылеуловители. Нужно отметить, что установка циклона перед рукавным фильтром может не снизить общее сопротивление системы (из-за снижения засорения фильтра пылью), так как снижение сопротивления тканевого фильтра может полностью компенсироваться увеличением сопротивления из-за самого циклона. Падение давления у циклона может изменяться от 750 Па у низкоэффективных циклонов до 2 кПа у высокоэффективных [3-8 inches wg].
Рукавные фильтры
правитьДля улавливания пыли в рукавных промышленных фильтрах воздух пропускается через фильтровальный материал. Для очистки воздуха его скорость первоначально снижается, что приводит к осаждению крупных частиц; а затем оставшиеся частицы улавливаются при прохождении воздуха через фильтровальный материал (Рис. 1.16). Отделение частиц от воздуха происходит при их столкновении с волокнами фильтровального материала и ранее осевшими частицами, и образованию на поверхности фильтра рыхлого воздухопроницаемого слоя из уловленных частиц. Так как большая часть пыли улавливается вне ткани (на её поверхности), то когда происходит очистка фильтра, уловленная пыль падает в пылеулавливающий бункер (находящийся под рукавами из фильтровальной ткани) под действием силы тяжести. Затем уловленная пыль удаляется из бункера через устройство для выгрузки пыли.
Промышленные рукавные фильтры обычно проектируются и подбираются так, чтобы при их нормальной работе потеря давления составляла 750 Па ÷ 1.2 кПа [4÷6 inches wg]. Такие пылеуловители могут обеспечить эффективность очистки до 99.97% (у высокоэффективных противоаэрозольных фильтров НЕРА) для мелкодисперсных частиц. Фильтровальная ткань может изготавливаться из шерсти, синтетических материалов, стекловолокна и др. В большинстве случаев при работе при температуре окружающей среды, самым экономичным является использование фильтров из шерсти. Но при повышенной температуре и при химически активных (агрессивных) загрязнениях нужно использовать фильтр из другого материала. Так как рукава из фильтровального материала должны периодически заменяться, то нужно приобретать такой фильтр, который допускает их (удобную) замену. Предпочтительно использование таких пылеуловителей, которые позволяют заменять фильтры извне.
При проектировании рукавного фильтра также можно учесть экономические факторы. Для данного конкретного случая воздушных загрязнений такие факторы, как общее падение давления, цикл очистки и площадь фильтровального материала. В статье "Baghouse System Design Based on Economic Optimization"[1- 8] приводится полезная модель, которая может быть наиболее подходящей на этапе предварительного проектирования.
Плотность улавливаемого материала требует особого внимания проектировщиков. Если при низкой плотности материала он будет двигаться с воздухом вверх, и если эта скорость движения материала вверх будет достаточно большой, то это может помешать нормальной регенерации фильтровальной ткани и соответственно – эксплуатации пылеуловителя. Улавливание материала с низкой плотностью (менее 480 кг/м3) [<30 pounds per cubic feet] может потребовать изменения конструкции пылеуловителя. В таких случаях нужно изменить конструкцию фильтра для того, чтобы учесть меньшую скорость гравитационного оседания материала (путём уменьшения скорости движения воздуха вверх внутри фильтра). Обычно такое изменение может выражаться в виде увеличения расстояния между фильтровальными рукавами, уменьшения длины рукавов, или расположения входного отверстия для запылённого воздуха выше.
Наконец, размеры частиц имеют большое значение для определения отношения скорости фильтрации воздуха (расход воздуха через единицу площади фильтра) и для выбора фильтровального материала. Обычно понимают, что чем мельче пыл, и чем больше концентрация пыли, тем меньше должна быть скорость движения воздуха через фильтровальный материал. Правильный выбор рукава из фильтровального материала или картриджа, учитывающий свойства улавливаемого материала, важен для обеспечения успешной работы пылеулавливающей системы. Статья "Fine Filtration Fabric Options Designed for Better Dust Control and to Meet PM2.5 Standards"[1- 9] даёт полезную информацию и о фильтровальных материалах, и о их способностях улавливать пыль при разных условиях эксплуатации. Также рекомендуется статья "Pick the Right Baghouse Material"[1- 10], в которой приводится схема, детально описывающая свойства текстильных материалов с точки зрения фильтрации.
Поступление пыли с входящим воздухом относится к количеству пыли, поступающему во входное отверстие пылеуловителя за единицу времени. Обычно оно выражается в кг/час [pounds per minute, lbs/min, или pounds per hour, lbs/hour], и пересчитывается в граны. Запылённость выражается в граммах на м3 [grains/cubic foot, gr/cf]. Запылённость воздуха зависит от множества факторов, включая количество источников пыли, подключенных к пылеулавливающей системе, типу источников пыли (дробилки, вибросита и т.п.), поступлению пыли от этих источников, и эффективности захвата этой пыли в каждом источнике. Количество пыли, поступающее от каждого из источников, зависит от ряда параметров, включая распределение частиц пыли обрабатываемого материала по размерам, содержанию влаги и производительности оборудования.
Агентство по охране окружающей среды (США) Environmental Protection Agency EPA собрало информацию о факторах, влияющих на пылеобразование для разных технологических процессов, включая переработку минеральных полезных ископаемых[1- 11]. В таблице 1.2 приводятся некоторые из этих факторов, которые получены путём усреднения известных результатов, и которые можно считать начальной точкой при попытке определить поступление пыли в пылеуловитель. Эти значения нужно умножить на производительность конкретного используемого оборудования для получения количества поступающей пыли кг/час [lbs/min]. Чтобы эффективно количественно определить поступление пыли в пылеуловитель также следует использовать основанные на практическом опыте рекомендации изготовителей газоочистного оборудования и фильтровальных материалов. Информация о поступлении пыли поможет определить (подходящую) скорость фильтрации воздуха, выбрать подходящий фильтровальный материал, тип пылеуловителя, вид входного отверстия и метод регенерации фильтровального материала.
Источник | Общая масса пыли, частицы которой меньше 10 мкм (РМ-10)†† |
---|---|
Третичное (tertiary) дробление | 0.0010886 [0.0024] |
Просев | 0.0039463 [0.0087] |
Место перегрузки конвейера | 0.0004989 [0.0011] |
Мокрое бурение - нефрагментированный камень | 0.0000363 [0.00008] |
Выгрузка самосвала – фрагментированный камень | 0.0000073 [0.000016] |
Загрузка самосвала – конвейером, раздробленный камень | 0.00004536 [0.0001] |
- † - неконтролируемый выброс пыли при переработке материала, кг/тонна [lb/ton].
- †† - частицы РМ-10 – это те, у которых диаметр меньше 10 мкм.
Для преобразования фунтов в граны можно использовать следующую формулу:
- 1 фунт в минуту / 1 куб фут в минуту = (0.45 кг/мин) / (0.0283 м3/мин) = 15.9 кг/м3 (Уравнение 1.7) (СИ)
- 7000 гран [lbs/min] / (cfm) = гран/куб.фут
- 1 г/фт3 = 2.288 *10-6 кг/0.0283 м3 = 7000 (0.45 кг/мин).
- где lb/min = производительность оборудования, перерабатывающего материал (кг/м3), а cfm = расход воздуха в пылеулавливающей системе (1 cfm = 0.0283 м3/мин).
Ниже приводятся сведения для качественной оценки концентрации пыли в очищаемом воздухе:
- Низкая концентрация = < 2.288 грамм/м3;
- Типичная концентрация = 2.3–11.5 грамм/м3;
- Большая концентрация = 11.5–22.9 грамм/м3;
- Очень большая концентрация = >23 г/м3.
Отношение расхода воздуха к площади ткани (air to cloth ratio) – показатель отношения расхода воздуха за минуту к единице площади фильтровального материала пылеуловителя (м3/мин воздуха / м2 фильтра) (ft3 air per minute/ft2 of bag area), и математически это выражение можно выразить так:
- air to cloth ratio = Q/A (ft3 air per minute/ft2 of bag area), или
- air to cloth ratio = Q/A(м3/мин воздуха / м2 фильтра), где 0.3 *Q/A [м] = Q/A [ft]
- где Q = расход газа (воздуха) м3/мин [cfm] и A = площадь фильтровального материала всех рукавов в м2 [ft2].
Пористость фильтровального материала (ткани) будет определять то, сколько воздуха сможет пройти через неё до того, как статическое давление станет слишком большим для корпуса пылеуловителя или для установленного вентилятора. Оценив запылённость очищаемого воздуха, можно также определить – какая масса пыли осядет на каждом квадратном метре фильтровального материала за единицу времени.
Отношение расхода воздуха к площади фильтра – это также показатель средней скорости движения воздуха через фильтр. Запылённость очищаемого воздуха прямо влияет на отношение расхода к площади. Чем выше концентрация пыли, тем медленнее должен двигаться воздух через фильтр, и отношение расход/площадь меньше. При большей концентрации пыли количество пыли, осевшей на фильтровальном материале – больше, и перепад давления больше. Отношение расход /площадь менее 1.22 м3/мин / м2 (4:1 ft3/min / ft2) считается маленьким; от 1.22 до 2.13 м3/мин – средним (4:1 ÷ 7:1), а более 2.13 м3/мин / м2 (7:1) – большим. При уменьшении отношения расход/площадь у фильтра становится больше площадь материала для осаждения пыли, что позволяет уменьшить перепад давления при той же остаточной загрязнённости фильтровального материала (после регенерации).
Для уменьшения отношения расход/площадь есть два основных способа: уменьшить расход воздуха или увеличить площадь фильтровального материала. Но с точки зрения проектирования всей вентиляционной системы изменение расхода воздуха нежелательно. Поэтому чаще увеличивают площадь фильтра.
Помимо отношения расхода воздуха к площади фильтра, на метод очистки (регенерации) рукавов из фильтровального материала может влиять запылённость очищаемого воздуха. Так как на практике фильтровальные материалы работают лучше при стабильной остаточной загрязнённости фильтра (для получения оптимальной степени очистки), то для поддержания такой степени загрязнённости можно регулировать длительность периода очистки и длительность периода меду очистками. Для получения такого режима очистки используют измерение перепада давления на пылеуловителе – это называется “очистка по потребности”. Очистка рукавов фильтровального материала начинается тогда, когда перепад давления достигает заранее заданной величины (большой), и прекращается тогда, когда перепад давления становится равным заранее заданной маленькой величины. Использование такого метода гарантирует, что на фильтровальном материале рукавов есть достаточно много неочищенной пыли. Лучший способ определить оптимальный режим очистки для всей системы – это использовать накопленный опыт и рекомендации изготовителей.
Для сброса пыли, осевшей на фильтровальном материале рукавного фильтра, есть три разных способа. Они используются в фильтрах с механическим отряхиванием; обратной продувкой и обратной импульсной продувкой.
Рукавные фильтры с механическим отряхиванием пыли
В этих фильтрах для удаления пыли используется механическое устройство, которое стучит по каркасу рукава. Для такой очистки нужно временно перестать пропускать запылённый воздух через рукав. Такие пылеуловители не требуют значительных затрат на техобслуживание, и у них низкие эксплуатационные расходы, но они занимают очень много места, конструкцию трудно изменить с учётом конкретных местных потребностей и у них маленькое отношение расхода воздуха к площади фильтра - 0.61 м3/мин / м2 (2:1 фут3/мин / фут2).
У рукавных фильтров с механическим отряхиванием рукав фильтровального материала закреплён внизу и подвешен вверху к отряхивающему устройству. Запылённый воздух входит в фильтр и оседает на внешней стороне трубообразного рукава. Для обеспечения непрерывной очистки воздуха такие пылеуловители делят на секции, и когда в одной из них происходит очистка фильтровального материала, воздух движется через пылеуловитель через другие секции (Рис. 1.17). Для изготовления рукавов нужно использовать такой материал, который может противостоять встряхиванию, например – хлопок.
Некоторые рукавные фильтры с механическим отряхиванием переоборудуют в фильтры с импульсной продувкой. Но это требует больших расходов, и при надлежащем уходе за фильтром не обязательно.
При использовании механических отряхивателей нужно выполнять ряд рекомендаций:
- В каждой из секций фильтра нужно установить манометры Magnehelic для определения перепадов давления в течение периодов очистки.
- Этот перепад давления должен быть, насколько достижимо, близок к нулю – чтобы обеспечить отделение слоя уловленной пыли от фильтровального материала и его свободное падение в бункер для пыли. Если перепад давления во время очистки будет больше ~62 Па (1/4 дюйма вод. столба), это резко ухудшит очистку фильтровального материала, что уменьшит расход воздуха, повысит перепад давления и сократит срок службы фильтровального рукава.
- Отряхивание рукавов должно проводиться при возрастании перепада давления на регенерируемой секции свыше 125 Па (1/2 дюйма вод. столба).
- Нужно экспериментально подобрать наилучший интервал между отряхиваниями рукавов так, чтобы не делать это слишком часто. Это также снизит износ и рукавов, и механического отряхивателя.
Рукавные фильтры с обратной продувкой
В фильтрах с обратной продувкой используется подвижное приспособление, которое подаёт воздух под невысоким давлением 20.7÷48.3 кПа (3÷7 psig) в фильтровальный рукав для его регенерации. К подаваемому воздуху не предъявляются те требования, которые предъявляются к сжатому воздуху из-за замерзания конденсата в воздуховодах. Недостаток – такие фильтры занимают больше места, и техобслуживание механизмов затруднено. Также они хуже работают в условиях, стимулирующих коррозию.
В таких фильтрах используются рукава, пристёгнутые к “ячеистой” пластине внизу, и подвешенные в верху пылеуловителя. Для обеспечения непрерывной работы пылеуловитель должен состоять из отдельных секций. Запылённый воздух входит в фильтр, и она оседает на наружной стороне рукавов. Перед началом регенерации процесс очистки в секции фильтра прекращается. Рукава очищаются путём продувки воздуха под низким давлением в обратном направлении (по отношению к направлению движения при очистке). Это заставляет рукава немного “съёжиться”, и сбросить накопленный на поверхности слой пыли. Для предотвращения полного сжатия на фильтровальном рукаве закрепляют кольца через разные интервалы, так что пыль может быть сброшена и падает в бункер (Рис. 1.18).
Первоначально фильтры с обратной продувкой использовали для фильтровального материала (стеклоткань), используемого для очистки газа при высокой температуре. Но с появлением новых синтетических фильтровальных материалов, более стойких при повышенной температуре и физическом воздействии, интерес к таким фильтрам снизился. У таких пылеуловителей отношение расхода воздуха к площади фильтра маленькое из-за низкой эффективности очистки фильтровального материала при (низкоскоростной) обратной продувке.
Рукавные фильтры с импульсной обратной продувкой.
Такие пылеуловители используют рукава из фильтровального материала, одеваемые на металлический каркас, предотвращающий сжатие рукава из-за разрежения (Рис. 1.19). Этот каркас закрепляется в отверстиях в пластине, разделяющей полости с загрязнённым и с очищенным воздухом. Запылённый воздух входит в пылеуловитель, и проходит через фильтровальный материал снаружи вовнутрь рукава. Слой уловленной пыли образуется на внешней стороне рукава, а для его удаления используется короткая импульсная подача сжатого воздуха в отверстие рукава, через которое обычно выходит очищенный воздух. Удар сжатого воздуха изгибает и надувает рукав, сбрасывая слой уловленной пыли. Используемый сжатый воздух должен быть чистым и сухим, иначе произойдёт увлажнение фильтровального материала, что уменьшит эффективность очистки. Такие пылеуловители могут быть не разделены на секции, а очистка части рукавов может проводиться без прекращения очистки воздуха фильтром – прямо во время работы.
Рукавные фильтры с импульсной продувкой используют импульсную подачу сжатого воздуха при давлении 4÷6 атм (60÷90 psig) для регенерации фильтровального материала. Это наиболее распространённый тип рукавного фильтра с импульсной продувкой, который используется с конца 1950-х. Очистка фильтровального материала рукавов позволяет пылеулавливающей системе работать при достаточно стабильном перепаде давления и требуемом расходе воздуха. Преимуществом таких фильтров является большая степень возврата уловленного продукта и высокая эффективность очистки воздуха. Другое достоинство – возможность делать вход загрязнённого воздуха в разных местах корпуса. Недостаток – работоспособность фильтра зависит от температуры и влажности воздуха.
Из-за более частого проведения циклов очистки, такие фильтры обеспечивают большую степень очистки фильтровального материала, чем тканевые пылеуловители, обсуждавшиеся ранее. Поэтому у фильтров с импульсной продувкой отношение расхода воздуха к площади фильтра может быть больше, например – 1.83 м3/м2 мин (6:1 ft3/ft2 мин) и выше. Но при улавливании пыли абразивных материалов следует использовать отношение 1.22 м3/м2 мин (4:1 ft3/ft2 мин). При большом отношении расхода воздуха к площади фильтра может происходить (более) сильный удар воздуха о фильтр, что может привести к переносу пыли на соседние рукава при очистке, и сократить срок службы фильтра до износа.
Рукава обычно делают из нетканого войлочного фильтровального материала. В фильтрах с импульсной продувкой не используют тканые материалы, так как последние пропускают через себя много не уловленной пыли до того, как на их поверхности образуется достаточно толстый слой уловленной пыли. Так как при импульсной продувке происходит интенсивная очистка фильтровального материала, то при использовании тканых фильтровальных материалов происходил бы проскок большого количества пыли в течение какого-то интервала времени после регенерации.
По критерию “стоимость-эффективность” фильтры с импульсной продувкой более эффективны, чем их более старые аналоги – фильтры с механическим отряхиванием. Эти фильтры могут работать при большем отношении расхода воздуха к площади фильтра, не имеют никаких подвижных частей, требующих техобслуживания, и меньших начальных расходов при закупке и установке.
Картриджные фильтры
Для улавливания пыли загрязнённый воздух в картриджных фильтрах пропускается через специальные картриджи, в которых находится компактно размещённый фильтровальный материал со складками большой общей площади. Существуют два основных типа картриджных фильтров – с горизонтальным и с вертикальным размещением картриджей (Рис. 1.20).
Этот тип фильтров, использующий для улавливания пыли пропускание загрязнённого воздуха через фильтровальный материал, появился позднее других. В отличие от других таких фильтров, в которых фильтровальный материал (тканый или войлочный) используется в виде рукавов цилиндрической формы, в этом фильтре используются картриджи, в которых размещено много фильтровального материала за счёт складок. Для установки в картриджи фильтровального материала со складками могут использоваться разные фильтровальные материалы, включая полиэстер или синтетические материалы. Из-за складок площадь фильтровального материала у такого фильтра больше, чем у фильтров со складками. Но у таких фильтров больше скорость воздуха, подходящего к фильтровальному материалу, и из-за этого может произойти повторный внос уловленной ранее пыли в картридж (например – сброшенной при регенерации). Поэтому скорость фильтрации ограничивается отношением расхода воздуха к площади фильтровального материала 0.61 м3/м2 мин (2:1 ft3/ft2 мин).
Картриджные фильтры работают так же, как и рукавные фильтры с импульсной продувкой – пыль оседает на наружной стороне фильтровального материала. Очищающий (сжатый) воздух подаётся в центр элемента, сбрасывая излишек накопившейся пыли. Так как в картриджах больше фильтровального материала (за счёт складок) при одинаковом расходе воздуха картриджный фильтр получается меньше, и соответственно капитальные расходы на его покупку и установку меньше. Так как картриджи вставляются в корпус фильтра сбоку, то требования к высоте потолка помещения у таких фильтров менее жёсткие, чем у рукавных фильтров с импульсной продувкой. Фильтровальный материал может быстро заменяться, что ускоряет техобслуживание. Недостатком этих фильтров является ограничение по выбору подходящих фильтровальных материалов (по сравнению с рукавными фильтрами), что не позволяет использовать картриджные фильтры при экстремальных температуре и влажности. Из-за большой площади фильтровального материала, размещённого в картридже со складками, расходы на замену фильтра (на один картридж) выше, чем за замену одного фильтровального рукава.
Главным достоинством картриджных фильтров является их компактность и удобность замены картриджей, что уменьшает воздействие пыли на рабочих (при техобслуживании). Новые картриджи поступают упакованными в картонные коробки. При замене новый картридж вынимается из коробки, вынимает из фильтра использованный картридж, устанавливает в фильтр новый картридж, а использованный помещает в коробку. Для очистки картриджей в фильтре используется импульсная продувка сжатым воздухом. При улавливании абразивной пыли срок службы картриджа может составлять два года. Но при использовании такого фильтра покупатель становится вынужден закупать только те картриджи, которые производятся изготовителем (другие не подойдут), а такое отсутствие конкуренции приводит к повышению цен на картриджи, и увеличивает расходы.
Нужно сказать, что при наличии липкой и влажной пыли картриджные фильтры плохо работают, и их применение обычно ограничивается температурой 83° (180°F). Запылённость очищаемого воздуха обычно ниже, чем у рукавных фильтров, так как фильтровальный материал, размещённый со складками, обычно очищается хуже, чем рукава. Кроме того, горизонтальное размещение картриджей приводит к тому, что при регенерации верхних картриджей сброшенная с них пыль падает на нижние картриджи.
Мокрые пылеуловители
правитьДля улавливания пыли в мокрых пылеуловителях как улавливающая среда используется вода или другая жидкость. Существуют мокрые пылеуловители (скрубберы) разных конструкций, и в большинстве из них для улавливания пылинок используется создание мокрых мишеней, с которыми они сталкиваются. Этой влажной мишенью может быть слой воды или область, где пылинки сталкиваются с капельками воды (Рис. 1.21).
Достоинствами мокрых пылеуловителей является способность работать при разной влажности, стойкость к коррозии при воздействии химических веществ, и небольшие затраты на техобслуживание. Но для мокрых пылеуловителей нужно много воды, которая удаляется вместе с уловленной пылью, что уменьшает эффективность и увеличивает затраты энергии. Для отделения уловленных частиц в промышленности часто используют пруды-отстойники, а воду из таких прудов можно использовать повторно.
Эффективность улавливания пыли мокрыми пылеуловителями определяется главным образом их перепадом давления. Чем больше перепад давления (гидравлическое сопротивление), тем больше эффективность очистки воздуха. Перепад давления у мокрых пылеуловителей обычно находится в диапазоне от 250 Па до более чем 3.7 кПа (1÷15 inches wg). При выборе конструкции мокрого пылеуловителя для конкретных условий использования учитывается требуемая степень очистки, запылённость очищаемого воздуха, и размер частиц.
При очистке влажного горячего воздуха мокрые пылеуловители являются самыми подходящими. При очистке такого воздуха с помощью тканевых (рукавных) фильтров возникают проблемы предотвращения конденсации воды и загрязнения фильтровального материала рукавов. А использование мокрых пылеуловителей устраняет эти проблемы. Но при использовании мокрых пылеуловителей возникает другая проблема – обработка воды, загрязнённой уловленной пылью. Она требует специальной обработки или использования прудов-отстойников.
Скрубберы Вентури
Разновидностью мокрых пылеуловителей являются скрубберы Вентури. Они состоят из воздуховода, форма которого схожа с формой трубки Вентури, и брызгоуловителя (Рис. 1.22). Запылённый воздух разгоняется до скорости 60-180 м/с (12,000÷36,000 feet per minute) во входной сужающейся части воздуховода. Из-за возникающих сильных завихрений происходит разрушение крупных капель воды, и возникает перепад давления от 1245 до более чем 3735 Па (5÷15 inches wg). Для защиты от абразивного износа воздуховод скруббера Вентури может быть сделан с керамической облицовкой. Сильные завихрения заставляют частицы воды и пыли сталкиваться друг с другом в горловине воздуховода. Затем полученные капли, загрязнённые пылинками, улавливаются инерционным брызгоуловителем.
Скруббер с отбойниками (Impingement Plate Scrubber)
В другом типе мокрых пылеуловителей – скруббере с отбойниками (Рис. 1.23) — загрязнённый воздух пропускается через отверстия в перфорированной пластине снизу вверх, и сталкивается со слоем воды, находящимся на пластине. Над каждым из отверстий есть пластинка, в которую ударяется прошедший отверстие воздух, что приводит к образованию маленьких капелек. Близкий контакт газа и жидкости приводит к эффективному улавливанию пылинок. Типичный перепад давления – 1 кПа (4 inches wg).
Скруббер с орошением потока каплями воды (Spray Tower Scrubber) В таких скрубберах используют распыление воды, капли которой падают против направления движения запылённого воздуха, и при этом улавливают частицы пыли. Эффективность улавливания пыли такими скрубберами обычно низкая, а типичный перепад давления – 250-500 Па (1÷2 inches wg). При очистке воздуха, загрязнённого частицами размером ≥ 10 мкм их эффективность порядка 70%, а при улавливании меньших частиц она ещё хуже. Но такие пылеуловители могут очищать воздух при очень большой концентрации пыли без опасности засорения
Циклоны с водяной плёнкой
Как и обычные – “сухие” – циклоны, в циклонах с водяной плёнкой для улавливания частиц используется центробежная сила, смежающая пылинки до касания покрытых плёнкой воды стенок пылеуловителя. Вода для смачивания стенок подаётся в верхней части устройства, и стекая вниз, она смывает уловленные частицы. Перепад давления у такого циклона обычно 500÷2000 Па (2÷8 inches wg), и он хорошо улавливает частицы размером от 5 мкм и больше.
Промышленные электрофильтры
правитьЭлектрофильтры – это пылеуловители, которые используют для улавливания частиц электрические силы, перемещающие последние из потока загрязнённого воздуха к (улавливающим) пластинам - электродам. При прохождении загрязнённого воздуха через пылеуловитель частицам сообщается отрицательных заряд в первой секции устройства, где для этого специальные коронирующие электроды создают коронный разряд. При этом с таких электродов стекает поток ионов, движущихся сквозь загрязнённый воздух, и прикрепляющихся к частицам. После придания частицам отрицательного заряда на них начинает действовать электрическое поле, и они начинают притягиваться к осадительным пластинам (электродам). Слой уловленных частиц удаляется с осадительных электродов отряхиванием.
Обычно начальные затраты на закупку и монтаж электрофильтров выше, (чем у других пылеуловителей), но у них есть ряд достоинств, которые стоит упомянуть. После установки электрофильтры требуют минимального техобслуживания, так как в них (практически) нет подвижных частей. Затраты времени на установку и эксплуатационные расходы у них также ниже. Наконец, электрофильтры позволяют повторно использовать уловленный продукта в технологическом процессе.
Существует четыре основных типа электрофильтров: сухие – с плоскими осадительными электродами и проволочными коронирующими электродами, и (сухие) с плоскими электродами flat plate (dry); мокрые; и двухзонные. Электрофильтры могут очищать большие объёмы воздуха, неплохо работают при различных температурах, и требуют минимального техобслуживания. К их недостаткам относят большие размеры, эксплуатационные расходы, нестабильная эффективность. Более подробно достоинства и недостатки электрофильтров обсуждаются в руководстве ACGIH: ACGIH handbook, Industrial Ventilation: A Manual of Recommended Practice for Design[1- 1].
Устройства для выгрузки пыли
правитьCollector discharge devices
Пыль, уловленная рукавным фильтром, сбрасывается и падает вниз - в бункер пылеуловителя. В этом бункере должно быть устройство для выгрузки уловленной пыли, которое должно обеспечивать сохранение герметичности пылеуловителя в процессе выгрузки пыли, чтобы не произошло уменьшение разрежения в присоединённой к фильтру вентиляционной системе. Обычно для выгрузки уловленной пыли из бункеров пылеуловителей используют шлюзовые роторные питатели (rotary airlock valve), двойные мигалки (double dump valves), затвор типа плоская мигалка (tilt valve), и вакуумные клапаны (dribble valve). Все эти устройств есть в продаже в разных вариантах конструктивного исполнения, и производятся разными изготовителями.
Шлюзовый роторный питатель
правитьRotary Airlock Valves
Это устройство обычно используют тогда, требуется обеспечить и герметичность, и измерение количества выгружаемого материала. Хотя такие устройства обычно используют для выгрузки пыли из рукавных фильтров, но это не наилучшее применение подобных устройств. Недостатки – большая стоимость и, возможно, большие расходы на ремонт из-за абразивного износа.
Двойные мигалки
правитьDouble Dump Valves
Двойные мигалки – это два клапана, устанавливаемые последовательно в месте выгрузки пыли из бункера (рукавного фильтра). Они могут срабатывать под действием веса уловленной пыли, или автоматически. При автоматическом срабатывании, вращающийся кулачок кратковременно открывает нормально-закрытый клапан (подпружиненный) – верхний и нижний. Каждый из клапанов открывается отдельно, по-очереди – так, что когда один открыт, другой всегда закрыт. Благодаря этому пыль высыпается через один из клапанов, а другой закрытый клапан сохраняет герметичность пылеуловителя. Если клапан открывается под действием веса уловленной пыли, то его конструкция проще, а выгрузка пыли не автоматизирована (Рис. 1.24). Для установки обоих видов пылевыгрузных устройств требуется, чтобы под бункером пылеуловителя было достаточно места (по вертикали). При автоматическом открывании может происходить износ устройства на уровне расположения кулачка каждого из клапанов.
Рис. 1.24. Пылевыгрузное устройство типа двойная мигалка с противовесами
Затвор типа плоская мигалка
правитьTilt Valves
Плоская мигалка схожа с двойной мигалкой, и их обычно устанавливают по две. Поворачивающаяся (закрывающая) часть этих затворов (язык) обычно находится или в горизонтальном, или в близком к горизонтальном положении, и присоединена к противовесу. Затворы регулируют так, чтобы они были плотно закрыты (при отсутствии уловленной пыли). По мере накопления уловленной пыли её вес начинает преодолевать разрежение в бункере и усилие от противовеса, и затвор открывается. Уловленная пыль сбрасывается вниз, на следующий затвор. Обычно расстояние между затворами – 63÷76 см (24÷30 inches) для того, чтобы верхний затвор успел закрыться до того, как откроется нижний.
Такое пылевыгрузное устройство дешевле, чем двойная мигалка или шлюзовой роторный питатель, но его трудно отрегулировать. После эксплуатации в течение некоторого периода может произойти залипание и фиксация в открытом положении. Для размещения нужно пространство ~ 1.2 м (4 feet) под бункером пылеуловителя (по вертикали).
Вакуумный клапан
правитьVacuum or Dribble Valves
Вакуумный клапан обычно состоит из эластичной резиновой трубы, установленной в стальном кожухе, который присоединяется к нижней части бункера пылеуловителя в месте выгрузки пыли. Изготовители предлагают клапаны разной конструкции. В некоторых используется клапан, похожий по форме на рыбий хвост (в трубообразном корпусе с фланцем для крепления). При работе вентиляционной системы в бункере пылеуловителя возникает разрежение, которое заставляет резиновую трубку деформироваться и сплющиться, закрывая отверстие. Это сплющенное закрытое состояние сохраняется до тех пор, пока над клапаном не скопится достаточно много уловленного материала так, что его вес раздвинет стенки резиновой трубки, и он высыплется. Обычно такие клапаны стоят недорого, очень надёжны, не требуют техобслуживания, и не требуют много места для размещения.
Фильтровальные материалы
правитьЗа последние 10 лет в промышленности была проделана большая работа не столько в области самих пылеуловителей, сколько в области совершенствования фильтровальных материалов. Некоторые из разработанных материалов предназначены для использования в тяжёлых эксплуатационных условиях. Разработанные ткани могут быть предназначены или для использования в каких-то конкретных условиях, или они могут обеспечить более эффективную работу пылеуловителя . Сейчас разработано много разных фильтровальных материалов, и это увеличивает выбор при проектировании фильтров.
Одно из самых важных свойств любого пылеуловителя – его способность улавливать частицы пыли из проходящего через фильтровальный материал потока воздуха. Термин “фильтровальная ткань” и ”фильтровальный материал” – равнозначны. Для установки в пылеуловители изготовители предлагают разные фильтровальные материалы с разнообразными свойствами. Вне зависимости от различия фильтровальных материалов, их эффективность зависит от способности улавливать частицы из потока воздуха. Способность фильтровальной ткани пропускать через себя воздух (то есть – её проницаемость) обычно описывают как объём воздуха, который может пройти через квадратный фут фильтровального материала при перепаде давления 125 Па (1/2 дюйма водяного столба). Другой показатель свойств фильтровального материала – его способность улавливать частицы пыли (эффективность). Например, высокоэффективный противоаэрозольный фильтр (НЕРА) способен улавливать не менее 99.97% частиц размером 0.3 мкм. А в промышленности предпочитают для описания эффективности использовать оценку минимальной эффективности MERV (minimum efficiency reporting value rating) (Таблица 1.3). Как видно из таблицы MERV, чем эффективнее фильтр, тем разнообразнее диапазоны частиц, которые он может улавливать.
Группа | Оценка MERV | Средняя эффективность улавливания частиц (PSE) размером 0.3-1 мкм | Средняя эффективность улавливания частиц (PSE) размером 1-3 мкм | Средняя эффективность улавливания частиц (PSE) размером 3-10 мкм |
---|---|---|---|---|
1 | 1
2 3 4 |
<20%
<20% <20% <20% | ||
2 | 5
6 7 8 |
20-34.9%
35-49.9% 50-69.9% 70-84.9% | ||
3 | 9
10 11 12 |
<50%
50-64.9% 65-79.9% 80-89.9% |
≥85%
≥85% ≥85% ≥90% | |
4 | 13
14 15 16 |
<75%
75-84.9% 85-94.9% ≥95% |
≥90%
≥90% ≥90% ≥95% |
≥90%
≥90% ≥90% ≥95% |
Если способность фильтра улавливать частицы пыли за счёт касания/зацепления, инерционного осаждения, диффузии и электрических сил выше, то и его оценка MERV тоже будет выше. Ниже приводится краткое описание упомянутых механизмов улавливания аэрозолей:
- Касание/зацепление происходит, когда частицы маленького размера движутся по линиям течения воздуха, и проходят при этом рядом с волокном фильтровального материала на расстоянии своего радиуса от его поверхности, и прилипают к волокну.
- При инерционном осаждении более крупные частицы, которые не способны следовать линиям течения воздуха при их искривлении около волокон сталкиваются с последними. Инерционное осаждение возрастает с ростом скорости воздуха и уменьшением расстояния между волокнами.
- Улавливание за счёт диффузии происходит, когда самые маленькие частицы (особенно те, которые меньше 0.1 мкм) под действием ударов молекул воздуха изменяют направление движения так, что улавливаются волокнами за счёт инерционного осаждения или касания.
- Электростатическое осаждение происходит тогда, когда фильтровальный материал может сохранять электростатические заряды. Так как у частиц пыли тоже есть электрические заряды, при их прохождении через фильтр они притягиваются и улавливаются волокнами.
Фильтровальный материал изготавливается из натуральных или искусственных волокон, и может быть или тканым, или нетканым. Для описания свойств тканых фильтровальных материалов обычно используют массу единицы площади или число нитей (на 100 мм) (thread count). Для описания нетканых материалов также используют массу единицы площади, но обычно дополняют классификацией толщины фильтра. Эффективность улавливания аэрозолей неткаными материалами обычно выше, чем у тканых (при одинаковой толщине), так как у нетканых материалов меньше размер пор. Важно отметить, что с точки зрения эффективности улавливания пыли, эффективность любого фильтровального материала (или его оценка MERV) может быть повышена за счёт использования более тонких волокон, увеличением числа волокон на единицу площади, или увеличением плотности упаковки волокон.
У любого фильтровального материала при его загрязнении уловленной пылью возрастает эффективность или оценка MERV. После начального периода улавливания частиц пыли с помощью какого-то из механизмов, описанных выше, на поверхности фильтровального материала образуется слой уловленных частиц, и при продолжении фильтрации запылённого воздуха этот слой становится главным фильтром, улавливающей средой. По мере продолжения очистки воздуха всё больше и больше частиц сталкивается и улавливается слоем ранее уловленных частиц, и этот слой растёт. Через какое-то время толщина этого слоя становится такой большой, что он уже сильно мешает прохождению воздуха через фильтр, и это приводит к большому возрастанию гидравлического сопротивления. После того, как возрастающий перепад давления достиг определённого значения, нужно удалить с фильтра образовавшийся на нём слой уловленной пыли каким-то механическим способом (отряхиванием, обратной продувкой, импульсной продувкой сжатым воздухом – описано выше).
Улавливание частиц фильтровальной тканью
правитьУлавливание частиц фильтровальной тканью происходит с помощью двух механизмов. Первый – улавливание частиц волокнами ткани и осевшими на них ранее уловленными частицами - по всей толщине фильтровального материала (depth loading). Это означает, что (улавливание пыли тканью) не зависит от образования слоя уловленных частиц, что позволяет получить оптимальную эффективность. Второй механизм – улавливание частиц преимущественно слоем ранее уловленных частиц, образовавшимся на поверхности фильтровального материала (surface loading). Это значит, что для получения максимальной эффективности необходимо, чтобы произошло образование слоя уловленных частиц на поверхности.
У войлочных фильтровальных материалов используется первый механизм. А фильтровальные ткани из полиэстера, полипропилена, арамидных волокон и схожих фильтровальных волокон используют второй механизм – они должны создавать и сохранять слой уловленных частиц в течение всего времени эксплуатации пылеуловителя. Таким образом, при этом механизме очистки фильтровальный рукав становится опорой, поддержкой для слоя пыли, улавливающего частицы. Пыль может проходить внутрь фильтровальной ткани для образования слоёв уловленных частиц на волокнах. В результате уловленная пыль создаёт пористую улавливающую среду, в которой размер пор гораздо меньше, чем в самой фильтровальной ткани, и это повышает эффективность улавливания пыли ранее уловленными частицами. Без этих уловленных частиц запылённый воздух будет проходить через крупные поры фильтровальной ткани, и эффективность очистки воздуха будет слишком низкой. Поэтому при проектировании и эксплуатации рукавных фильтров с рукавами из фильтровальной ткани важно использовать подходящие: отношение расхода воздуха к площади фильтра, периоды между очисткой рукавов и давление, при котором происходит очистка. При оптимальном режиме работы перепад давления на фильтре составляет 750÷1500 Па (3÷6 inches wg), а частота проведения очистки и расход сжатого воздуха сведены к минимуму. Это не означает, что если система работает при перепаде давления больше 1500 Па, то её режим работы не оптимальный. Некоторые системы могут эффективно работать при большем перепаде давления. Система работает удовлетворительно, если перепад давления постоянен, и обеспечивается очистка воздуха в необходимой степени при заданном его расходе.
Если применяется (специальный) фильтровальный материал, у которого улавливание частиц просиходит на поверхности самого материала, то для получения оптимального режима очистки образования слоя уловленной пыли на волокнах в толще фильтровального материала, или на его поверхности - не требуется. У таких фильтровальных материалов (эффективное) улавливание пыли происходит на поверхности самого материала. В некоторых из таких фильтровальных материалов используются мембраны, состоящие из очень тонкого слоя (1 mil) фторопласта PTFE (polytetrafluoroethylene), приклеенного к подложке. В качестве подложки может использоваться обыкновенный войлок. При изготовлении размер пор контролируется, что позволяет предсказать эффективность улавливания. Размер пор настолько мал, что через них способны пройти только очень маленькие субмикронные частицы, и поэтому эффективность очистки воздуха у такого материала очень высока.
У пылеуловителей, которые используют фильтровальные материалы, схожие с войлоком, перепад давления обычно больше, чем при использовании фильтровальных материалов с улавливанием пыли на поверхности, так как у них к сопротивлению фильтровального материала добавляется сопротивление слоя уловленной пыли. Как упоминалось ранее, перепад давления у таких пылеуловителей (с образованием слоя уловленной пыли) обычно находится в пределах 750÷1500 Па, а у пылеуловителей с осаждением пыли на поверхность фильтровального материала – в пределах 500÷1000 Па (3÷6 inches wg / 2÷4 inches wg).
В рукавных фильтрах, в которых регенерация фильтровального материала проводится с помощью отряхивания, как фильтровальный материал обычно используется тканый х/б, сатин из полиэстера и войлок с небольшой массой на единицу площади. У современных пылеуловителей с регенерацией импульсной продувкой сжатым воздухом и обратной продувкой используют фильтровальные материалы с плотностью 300-600 г/м2. В двух последних типах рукавных фильтров не используют тканые фильтровальные материалы, так как процесс очистки (в таких тканях) создаёт более сильную нагрузку на ткань, чем отряхивание. При импульсной продувке произойдёт открывание (крупных) пор фильтровальной ткани, что приведёт к просачиванию большого количества неуловленной пыли (в течение некоторого периода времени сразу после продувки). В картриджных фильтрах обычно используют фильтровальные материалы из смеси целлюлозных и синтетических волокон, и скрученных (spun-bonded) волокон полиэстера.
При выборе фильтровального материала для конкретных условий использования учитывается: температура очищаемого воздуха, концентрация пыли, распределение частиц по размерам, химический состав газа, абразивные свойства (пыли), статический заряд, свойства при регенерации, требуемая степень очистки воздуха.
Ниже приводится более подробное описание этих критериев.
- Температура. Максимальная эксплуатационная температура выбираемого фильтровального материала (для длительного режима использования) должна соответствовать (быть выше) максимальной возможной температуре очищаемой газовой смеси.
- Концентрация пыли в очищаемом газе. Запылённость очищаемого газа имеет очень большое значение, особенно тогда, когда она низкая. При маленькой концентрации пыли трудно добиться образования слоя пыли у тех фильтровальных материалов, в которых этот слой обеспечивает достаточную эффективность очистки.
- Распределение частиц по размерам. При большой доле мелкодисперсных частиц требуется использование более эффективной ткани.
- Химический состав очищаемого газа. Если в очищаемом газе есть агрессивные компоненты, или органические растворители, то проектировщик должен гарантировать, что выбранный фильтровальный материал будет способен работать в таких условиях.
- Абразивные свойства. Если пыль имеет абразивные свойства, то при проектировании нужно учесть это, используя боле толстый войлок, или устанавливая “манжеты” (cuffs) на нижнюю часть тех рукавов, которые находятся рядом со отверстием для входа запылённого воздуха.
- Статический заряд. При очистке взрывоопасных пылегазовых смесей и улавливании такой пыли, которая может создать значительный статический заряд в воздуховодах, требуется заземление. Для этого, например, может использоваться проволока, вшитая в материал фильтровального рукава, и прикреплённая к перфорированной пластине для монтажа рукавов. также для заземления можно использовать антистатические волокна (epitropic fibers) – углеволокно, графитовые волокна, или добавляя к фильтровальному материалу 3-4% волокон из нержавеющей проволоки. В этих случаях важно обеспечить, чтобы конец фильтровального рукава (который используется для его крепления) был сделан из электропроводного материала, и обеспечил стекание заряда на заземление.
- Свойства при регенерации. Хорошо спроектированный рукавный фильтр решает две задачи: улавливает пыль, и сбрасывает её с фильтровального материала после улавливания. Если пыль влажная, масляная или липкая, может потребоваться обработка фильтровального материала для улучшения его очистки от уловленной пыли. Для этого может использоваться модификация поверхности фильтровального материала – подпаливание поверхности или её оглазуровывание (singeing or glazing). Также для улучшения отделения уловленной пыли поверхность материала может покрываться фторопластом или мембраной из него. Также изготавливаются специальные фильтровальные материалы, в которых волокна обрабатываются до начала изготовления войлока (это увеличивает срок службы покрытия по сравнению с обычным).
- Эффективность. Для оценки требуемой степени очистки используется допустимая концентрация пыли в очищаемом воздухе, которая определяется специалистом по охране окружающей среды на основе требований Агентства по охране окружающей среды, и требований законодательства штата или региона (которые определяют допустимое значение выбросов аэрозоля в атмосферу).
(Более подробно о тканевых фильтрах можно узнать в книге: Charles E. Billings et. al. Handbook of fabric filter technology 1970 644с 49 Мб)
Проектирование пылеулавливающей системы
правитьПрименение для простых систем принципов, описанных в этой главе выше, позволяет проектировать более сложные вентиляционные системы. В сущности, сложная вентиляционная система – это просто сочетание нескольких простых систем, соединённых вместе (Рис. 1.25). При проектировании сложной системы нужно использовать следующий базовый метод:
- Рассматривается план предприятия, расположение оборудования, его высота над уровнем земли.
- Проектирование начинается с того кожуха / укрытия / местного отсоса и т.п., который наиболее удалён от вентилятора.
- Прорисовывается эскиз воздуховодов вентиляционной системы (включая вид сверху и высоту), положение вентилятора, пылеуловителя и оборудования, и каждая ветвь и секция вентиляционной системы (основной) обозначается цифрами или буквами для удобства.
- Или выбирается из имеющихся, или проектируется укрытие / местный отсос, соответствующие условиям в месте образования пыли, и определяется требуемый для него расход воздуха.
- Создаётся эскиз вентиляционной системы с укрытиями / отсосами от всех источников пыли, включая ориентацию и высоту места выпуска очищенного воздуха.
Ниже приводятся некоторые основные положения, используемые при проектировании пылеулавливающей вентиляционной системы:
- Одно из самых важных обстоятельств – количество пыли, которое (должна) улавливать вентиляционная система. У разных улавливающих систем разные способности улавливать пыль.
- (Знание) общего перепада давления в системе помогает определить тип используемого пылеуловителя. При улавливании наиболее летучей пыли разрежение во входном (в пылеуловитель) отверстии будет ниже 5 кПа (20 inches wg), т.к. для транспортировки летучей пыли от места образования до пылеуловителя не требуется использование воздуховодов с большой скоростью движения воздуха – ведь пыль не оседает. При таком разрежении можно использовать обычные рукавные фильтры и картриджные фильтры.
- В некоторых случаях требуется большее разрежение (более 10 кПа), и требуется усиленное газоочистное оборудование (способно работать при сильном разрежении).
- В большинстве вентиляционных систем могут использоваться пылеуловители круглой или прямоугольной формы. Но при большом разрежении (более 10 кПа) требуется использование более прочных цилиндрических корпусов.
После того, как будет сделана схема всей вентиляционной системы, включая все местные отсосы/укрытия, воздуховоды и пылеуловители, эта информация используется для определения требуемой производительности вентилятора. При этом (может потребоваться) многократно обращаться за помощью к изготовителям вентиляторов для подбора подходящего изделия и его параметров работы / регулировки.
Примечание к переводу: Помимо рекомендуемого авторами руководства (на английском языке), есть литература с описанием расчётов при проектировании вентиляционных сетей (высокоскоростных) на русском языке, доступна в интернет бесплатно. Например: Внутренние санитарно-технические устройства. Часть 3. Вентиляция и кондиционирование воздуха. Книга 1 (и книга 2 тоже). Справочник проектировщика. Москва, Стойиздат, 1992г. Под ред. Н.Н. Павлова и Ю.И. Шиллера.
Улавливание пыли, содержащей глину
правитьПри проектировании системы, которая будет улавливать пыль, содержащую глину, требуется особая осторожность. Обычно глина высушивается до состояния, при котором содержание влаги составляет 10% - по сравнению с продукцией из кварца, которая высушивается до содержания влаги 0.5% и менее. Большее содержание влаги в глине становится важным, если температура перемещаемого воздуха достигает точки росы. Обычно это случается у стенок воздуховодов, или у стенок корпуса рукавного фильтра. Поверхность частиц глины становится липкой и они прилипают к любой поверхности, которой касаются. Через некоторое время происходит засорение или закупоривание (воздуховодов). Для предотвращения этого нужно принять дополнительные меры – теплоизоляция, подогрев воздуховодов, установка оборудования в (отапливаемом) помещении и т.п.
Вентиляторы
править(Выбор) вентилятора является важной частью проектирования пылеулавливающей вентиляционной системы. Они используются для перемещения воздуха в вентиляционной системе, для чего создают или избыточное давление на входе, или разрежение на выходе из неё (blowing or exhausting ventilation system). В первом случае вентилятор устанавливается около всасывающего конца вентиляционной системы, и используется для “проталкивания” воздуха через систему. Во втором случае вентилятор устанавливается около выпускного отверстия и используется для всасывания воздуха так, что тот проходит (просасывается) через всю систему[1- 3].
В вентиляционных системах используют различные вентиляторы, и их выбор зависит от их эксплуатационных характеристик. Чтобы правильно выбрать вентилятор для вентиляционной системы, нужно иметь представление об эксплуатационных характеристиках вентиляторов.
Эксплуатационные характеристики вентиляторов
правитьЭксплуатационные характеристики вентиляторов предоставляются изготовителем. Эта информация может предоставляться или в виде таблиц, и/или в виде графиков. Таблицы с характеристиками вентиляторов дают лишь минимальную необходимую информацию – статическое давление, расход воздуха, и мощность, потребляемая вентилятором (с учётом его КПД) (brake horsepower BHP)[1- 12]. Статическое давление определяется тем перепадом давления, который необходим для преодоления трения во всей вентиляционной системе. Расход воздуха – количество воздуха, которое должно перемещаться через всю вентиляционную систему. Потребляемая мощность BHP – это мощность, которую должен сообщать вентилятору двигатель при определённых значениях статического давления и расхода воздуха (и при том значении КПД, который соответствует этим расходу и давлению).
Также для описания характеристик вентиляторов используют графики параметров их работы, которые описывают взаимосвязи между параметрами вентилятора для определённых условий. Обычно такие графики строят для конкретной модели вентилятора и для определённой частоты вращения (об/мин RPM). Если нужно описать свойства определённой модели вентилятора при разной частоте вращения, то приходится использовать серии графиков, каждый из которых соответствует определённой частоте вращения. На Рис. 1.26 показаны типичные графики параметров работы: статическое давление по оси OY, а расход воздуха – по оси OX. Также на графике показана кривая потребляемой мощности BHP (со шкалой на отдельной оси OY). Иногда дополнительно приводят информацию об уровне шума и КПД[1- 3].
Вентилятор выбирают под известные значения расхода воздуха в вентиляционной системе и статическое давление. Нужно выбрать такой вентилятор, чтобы требуемые значения статического давления и расхода воздуха попадали на “рабочие участки” (operating range) его характеристик, а не в том диапазоне, где графики “сваливаются” (stalling ranges).
Если вентилятор работает в своём рабочем диапазоне, воздух проходит через лопатки его рабочего колеса плавно, без завихрений - и тихо. Если расход воздуха и статическое давление попадают на рабочий участок, то по графику можно определить, какую мощность нужно подвести к вентилятору для обеспечения его работы в этом режиме. А если расход воздуха и статическое давление попадают на не рабочий участок, то вентилятор не будет работать нормально, и произойдёт аэродинамический срыв. Это происходит, когда расход воздуха и скорость воздуха становятся настолько маленькими, что воздух уже не может двигаться, следуя контурам лопаток рабочего колеса. Воздух, входящий во входное отверстие вентилятора, отбрасывается лопатками дальше – для получения большого статического давления при маленьком расходе воздуха, что приводит к появлению сильных завихрений и завихрений. Поэтому на таком режиме работы вентилятор будет создавать сильный шум и у него будет низкий КПД из-за турбулентности и появления вихрей[1- 13].
Уравнения пересчёта параметров вентилятора
правитьДля определения того, как изменение частоты вращения влияет на статическое давление, расход воздуха и потребляемую мощность, можно использовать несколько уравнений. Эти упрощённые уравнения применимы до тех пор, пока плотность воздуха и диаметр вентилятора неизменны[1- 13].
- CFM2 / CFM1 = RPM2 / RPM1 (Уравнение 1.8) (СИ, IP)
- SP2 / SP1 = (RPM2 / RPM1)2 (Уравнение 1.9) (СИ, IP)
- BHP2 / BHP1 = (RPM2 / RPM1)3 (Уравнение 1.10) (СИ, IP)
- N2 – N1 = 50 × Log10 × (BHP2 / BHP1) (Уравнение 1.11)
- где RPM = частота вращения, об/мин;
- CFM = расход воздуха, м3/с, м3/час [cfm];
- SP = статическое давление (уравнение может использоваться и для полного, и для статического, и для динамического давлений – но одних и тех же);
- BHP = потребляемая мощность вентилятора (может использоваться для полезной и потребляемой мощностей, или для полной мощности – но для одной и той же, и
- N = уровень шума, дБ.
Индексы обозначают разные режимы работы вентилятора, то есть – 1 для одного режима, а 2 – для другого (например – разная частота вращения). Также есть уравнения, позволяющие учесть изменение диаметра рабочего колеса и плотность воздуха, но это выходит за пределы настоящей главы[1- 3]. Для определения влияния изменения плотности воздуха и диаметра рабочего колеса можно обратиться к[1- 13] и[1- 3].
Типы вентиляторов
правитьНаиболее широко используются два типа вентиляторов – осевые и радиальные (centrifugal fans). Также имеются конструкции вентиляторов, в которых сочетаются элементы обоих типов: канальные и крышные вентиляторы. Для выбора подходящего вентилятора используется информация о требуемых расходе воздуха и статическом давлении для данной вентиляционной системы.
Осевые вентиляторы
К осевым вентиляторам относят вентиляторы пропеллерного типа (propeller fans), канальные (tubeaxial fans), канальные с (сильным) поджатием потока (vaneaxial fans), и двухступенчатые осевые вентиляторы. Осевые вентиляторы перемещают воздух в направлении оси своего вращения. Чаще всего встречаются вентиляторы пропеллерного типа. Они обычно устанавливаются в стене здания около источника тепла для удаления горячего воздуха наружу (Рис. 1.28). У таких вентиляторов двигатель может располагаться по-разному: может использоваться ременная передача, или рабочее колесо устанавливается прямо на ось мотора. В настенных вентиляторах могут быть жалюзи, которые автоматически закрываются при выключении вентилятора. Вентиляторы пропеллерного типа используют тогда, когда нужно перемещать много воздуха при небольшом перепаде давления[1- 13].
Канальные вентиляторы (tubeaxial fans) используют для выброса воздуха из всасывающего воздуховода (Рис. 1.29 слева). Они состоят из рабочего колеса с большим числом лопаток, которое находится в цилиндрическом канале. Для улучшения перемещения воздуха в поперечном сечении лопатки обычно имеют аэродинамический профиль. Диаметр втулки может составлять от 30 до 50% от наружного диаметра рабочего колеса[1- 13]. (Трубообразный) корпус присоединяют к воздуховоду, и на корпусе располагается место крепления двигателя. Вентиляторы такой конструкции обычно используются тогда, когда требуется получить умеренное статическое давления (большее, чем то, которое могут обеспечить пропеллерные вентиляторы).
Канальные вентиляторы (tubeaxial fans) схожи с канальными вентиляторами с поджатием потока (vaneaxial fans). В корпусе последних есть направляющие лопатки, направленные параллельно потоку воздуха (Рис. 1.29 справа). Эти лопатки используют для изменения направления движения воздуха, закрученного рабочим колесом, в чисто осевое, не закрученное направление, что повышает статическое давление. Ни в пропеллерных, ни в канальных вентиляторах без поджатия потока (tubeaxial fans) нет таких лопаток, и из-за этого часть потребляемой энергии теряется впустую на ненужное закручивание потока. Диаметр втулки канального вентилятора с поджатием потока (vaneaxial fans) составляет от 50 до 80% от наружного диаметра рабочего колеса[1- 13]. Такие вентиляторы используют для получения большего статического давления.
Двухступенчатые осевые вентиляторы обычно состоят из двух осевых вентиляторов, соединённых последовательно. Это позволяет получить большее статическое давление, чем у одного такого вентилятора, так как статические давления складываются. В таком вентиляторе оба рабочих колеса могут вращаться в одну сторону, и тогда между ними ставят направляющие лопатки, или же они вращаются в противоположные стороны.
Радиальный вентилятор
В радиальном вентиляторе воздух движется не так, как в осевом. В радиальном вентиляторе воздух проходит через вращающееся рабочее колесо и выбрасывается в радиальном направлении лопатками – в корпус вентилятора. В результате воздух движется перпендикулярно оси вращения, или параллельно движению лопаток[1- 3], а корпус используется для направления потока воздуха в требуемую сторону (Рис. 1.30).
Существуют различные типы радиальных вентиляторов. У всех типов радиальных вентиляторов схожий характер движения воздуха, а отличие заключается в форме и расположении лопаток рабочего колеса. У лопаток разных типов есть свои достоинства при использовании вентилятора в разных случаях. В зависимости от назначения вентилятора оптимальная конструкция рабочего колеса может быть разной:
- Если поперечное сечение лопаток соответствует аэродинамическому профилю (airfoil type blades), то у такого вентилятора будет максимальный КПД и минимальный уровень шума.
- У вентилятора с искривлёнными лопатками, загнутыми назад (backward curved blades), КПД будет несколько меньше. Такая конструкция лопаток больше подходит для вентиляторов, перемещающих загрязнённый воздух, так как у них постоянная толщина, и они могут быть сделаны из более прочного материала, стойкого к воздействию загрязнённого воздуха.
- Прямые лопатки, загнутые назад (backward inclined blades) – менее прочные, и у вентилятора с такими лопатками ниже КПД. Но их легче изготавливать из-за простой формы.
- Изготавливаются рабочие колёса с радиальными лопатками, искривлёнными на конце (radial tip blades). Такие конструкции в основном используют при большом диаметре рабочего колеса (75-150 см / 30- 60 inches), которое должно работать при высокой температуре при минимальной загрязнённости воздуха[1- 13].
- Если лопатки загнуты вперёд (forward curved blades), то скорость потока воздуха будет больше, чем у любого другого радиального вентилятора того же размера при тех же оборотах. Это позволяет сделать более компактный вентилятор (по сравнению с другими типами радиальных вентиляторов). Такие вентиляторы часто используют в печах, кондиционерах, и для охлаждения электронного оборудования.
- Прямые лопатки (radial blades) – прочные и самоочищающиеся, но у вентилятора с прямыми лопатками низкий КПД. Такие вентиляторы можно использовать для перемещения газа, содержащего агрессивный дым или абразивную пыль (например – при абразивной обработке материала).
Другие типы вентиляторов
правитьКанальные радиальные вентиляторы, или радиальные прямоточные вентиляторы (axial-centrifugal fans, or tubular centrifugal, or in-line centrifugal fans) используют центробежный вентилятор для перемещения воздуха в канале воздуховода (без изменения направления движения). Для этого воздух проходит через входное отверстие, и поворачивает на 90° для прохождения через лопатки радиального вентилятора. Затем воздух движется радиально и снова поворачивает на 90° так, что движется в первоначальном направлении к выходному отверстию (Рис. 1.31). Эти вентиляторы удобно устанавливать на воздуховоды, и они создают большее статическое давление, чем осевые вентиляторы при одинаковых диаметре и оборотах. Но из-за двух поворотов воздуха на 90° их КПД ниже, чем у осевых вентиляторов.
Крышные вентиляторы
правитьИзготавливаются крышные вентиляторы как осевой, так и радиальной конструкции (Рис. 1.32). Обычно они устанавливаются на крышу завода, и они являются составной частью общей вентиляционной системы предприятия, описанной в главе 8 “Уменьшение пылеобразования во второстепенных источниках”. Большинство крышных вентиляторов используют для удаления воздуха из здания, и создания восходящего потока воздуха в здании. Но при необходимости они могут использоваться для подачи чистого воздуха в здание сверху вниз, что приведёт к появлению нисходящего потока воздуха. Выпуск удаляемого воздуха может быть радиальным или вертикальным. Вертикальный выпуск обычно используют для воздуха, загрязнённого маслом, жиром или пылью. При использовании крышных осевых вентиляторов воздуховоды (трубы для выпуска воздуха) обычно не требуются. А при использовании крышных радиальных вентиляторов воздуховоды могут потребоваться.
.
ССЫЛКИ
- ↑ а б в г д е ACGIH [2010]. Industrial ventilation: a manual of recommended practice for design. 27th ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
- ↑ Hinds WC [1999]. Aerosol technology, properties, behavior, and measurement of airborne particles. 2nd ed. New York: John Wiley & Sons, Inc.
- ↑ а б в г д е ё Hartman HL, Mutmansky JM, Ramani RV, Wang YJ [1997]. Mine ventilation and air conditioning. 3rd ed. New York: John Wiley & Sons, Inc.
- ↑ Swinderman RT, Marti AD, Goldbeck LJ, Strebel MG [2009]. Foundations: the practical resource for cleaner, safer, more productive dust & material control. Neponset, Illinois: Martin Engineering Company.
- ↑ Johnson GQ [2005]. Dust control system design: knowing your exhaust airflow limitations and keeping dust out of the system. Powder and Bulk Eng 19(4):51–59 http://www.powderbulk.com/.
- ↑ DallaValle JM [1932]. Velocity characteristics of hoods under suction. ASHVE Transactions 38:387.
- ↑ Fletcher B [1977]. Centreline velocity characteristics of rectangular unflanged hoods and slots under suction. Ann Occup Hyg 20:141–146.
- ↑ Caputo AC, Pacifico MP [2000]. Baghouse system design based on economic optimization. Env Prog 19(4):238–245. http://www.abcm.org.br/pt/wp-content/anais/cobem/1999/pdf/AAADAE.pdf
- ↑ Martin CT [1999]. Fine filtration fabric options designed for better dust control and to meet PM2.5 standards. Cement Industry Technical Conference IEEE IAS/PCA. pp. 385–393.
- ↑ Mycock JC [1999]. Pick the right baghouse material. Power Eng 103(7):43–46. http://www.powderbulk.com/
- ↑ EPA [1995]. AP 42, Fifth Edition, Compilation of air pollutant emission factors, volume 1: stationary point and area sources. Environmental Protection Agency. http://www.epa.gov/ttn/chief/ap42
- ↑ Greenheck Fan Corporation [1999]. The basics of fan performance tables, fan curves, system resistance curves, and fan laws. Schofield, WI: Greenheck Fan Corp.
- ↑ а б в г д е ё Bleier FP [1998]. Fan handbook: selection, application, and design. New York: McGraw-Hill.
ГЛАВА 2. Обеспыливание с помощью воды
правитьВозможно, самым древним способом борьбы с пылью при переработке минеральных полезных ископаемых является использование воды (use of wet spray systems). При увлажнении масса каждой из частиц пыли возрастает, и это уменьшает её способность находиться в воздухе. Чем тяжелее группа частиц, тем труднее окружающему воздуху переносить их. Для эффективного пылеподавления с помощью увлажнения нужно правильно выбирать место расположения сопел, размер получаемых капель, характер распыления воды, и обеспечить необходимый уход и техобслуживание оборудования.
В большинстве случаев при переработке минеральных полезных ископаемых для увлажнения используется вода. Хотя использование распыления воды является очень простым методом, для разработки эффективной системы для конкретных условий нужно учесть ряд обстоятельств. При переработке полезных ископаемых распыление воды позволяет решать две задачи:
- Предотвращение попадания пыли в воздух путём увлажнения руды - за счёт смачивания пыли.
- Улавливание пыли, (уже) попавшей в воздух, орошением облака пыли каплями воды, которые сталкиваются с пылинками, прилипают к ним и (быстро) осаждаются вместе с ними.
В большинстве случаев для снижения запылённости используется сочетание этих методов.
Принципы борьбы с пылью с помощью воды
правитьДля эффективного использования распыления воды нужно помнить, что каждый тип руды и условия его обработки создают уникальную ситуацию, которая требует отдельного рассмотрения для разработки оптимальной (для неё) улавливающей системы. Например, распыление воды для некоторых видов руды недопустимо, особенно при большой концентрации глины или сланцев. Даже при маленькой концентрации эти вещества начнут засорять сита и произойдёт “зарастание” лотков. Кроме того, воду нельзя использовать круглый год.
Применение воды
правитьПри использовании воды для снижения концентрации пыли, эффект от её применения ограничен по времени из-за испарения. Поэтому необходимо использовать распыление воды в разных местах технологической цепочки для эффективного снижения запылённости. При чрезмерном увлажнении могут возникнуть проблемы при выполнении любой операции, и переувлажнение может повлиять и на оборудование, и на технологический процесс, и на способность конечного продукта пересыпаться при транспортировке. В большинстве случаев хорошо спроектированная система, распыляющая воду мелкими капельками, увеличивает влажность (руды) не более чем на 0.1%[2- 1]; а распыление воды крупными каплями (для увлажнения для предотвращения пылеобразования) может повысить влажность на 1.5%.
При дроблении материала большинство образовавшихся частиц пыли не попадает в воздух, а остаётся на поверхности разрушенных кусков. Поэтому увлажнение для увеличения адгезии имеет большое значение, так как оно предотвращает отрыв и унос в воздух образовавшейся пыли. Для эффективной работы системы также важно обеспечить равномерность увлажнения. Пылеобразование будет наименьшим, если оросить руду водой, а затем механически перемешать руду и воду для равномерного увлажнения.
В идеале, работа оросительной системы должна быть автоматизирована так, чтобы вода распылялась только тогда, когда происходит обработка руды. При распылении воды для улавливания витающей пыли в автоматику можно добавить таймер, чтобы распыление продолжалось некоторое время после прекращения обработки руды.
Расположение сопел
правитьИз-за того, что образование пыли может происходить в разнообразных условиях, твёрдых и жёстких правил, определяющих расположение сопел для распыления воды (для снижения запылённости) - нет. Но есть указания, позволяющие повысить эффективность системы.
- В тех системах, которые используются для увлажнения руды для предотвращения образования пыли и её попадания в воздух, форсунки должны располагаться перед местом перегрузки, которое (в большинстве случаев) становится источником пыли[2- 2].
- Для хорошего перемешивания материала и воды нужно тщательно выбирать место расположения сопел[2- 2].
- Для предотвращения попадания пыли в воздух нужно раcполагать форсунки на оптимальном расстоянии от материала – достаточно далеко для того, чтобы распыляемая вода охватывала требуемую площадь, и достаточно близко для того, чтобы потоки воздуха не уносили капли воды в сторону от места, которое нужно увлажнить[2- 2]. При определении оптимального расстояния от форсунки до “цели” также нужно учитывать размер капель.
- При распылении воды для улавливания пыли, попавшей в воздух, форсунки нужно располагать так, чтобы капли воды могли взаимодействовать с пылью как можно дольше.
На Рис. 2.1 показано, как обычно используют распыление воды для снижения запылённости в месте сброса материала с конвейера в бункер. В этом случае форсунки устанавливают так, чтобы вода, распыляемая каждой из них, могла взаимодействовать с находящейся в воздухе пылью – так, чтобы не мешать работе других форсунок, и чтобы капли не уносились потоками воздуха.
Размер капель
правитьControlling Droplet Size
При распылении воды для борьбы с пылью одним из важнейших параметров является размер капель. Если капли будет значительно больше размера пылинок, то в большинстве случаев при встрече пылинка будет увлекаться в сторону потоком воздуха, огибающим каплю, и не будет уловлена. А если размеры сопоставимы, то произойдёт столкновение, и пылинка будет уловлена каплей (Рис. 2.2). Для наилучшего улавливания пылинок их размер должен быть примерно равен размеру капель воды. Также вероятность улавливания возрастает, если (при распылении одинакового количества воды) размер капель уменьшится – из-за увеличения числа капель[2- 3].
При орошении материала для предотвращения попадания пыли в воздух нужно использовать капли размером больше 100 мкм (оптимально – от 200 до 500 мкм). А для улавливания пыли, попавшей в воздух, размер капель должен быть схожим с размером пылинок. Здесь требуется добиться столкновения капель и пылинок, и их падения вниз. Было показано, что это лучше всего обеспечивается при размере капелек от 10 до 150 мкм[2- 4]. В таблице 2.1 приводятся сведения о скорости осаждения частиц и капель разного размера.
Размер частицы пыли, мкм | Название | Скорость падения в спокойном воздухе, см/с† | Время, за которое она упадёт на 3.1 метра (10 ft), сек |
---|---|---|---|
5000-2000 | Ливень | 359 - 339 | 0.85 - 0.90 |
2000-1000 | Сильный дождь | 339 – 277 | 0.9 – 1.1 |
1000-500 | Умеренный дождь | 277 - 191 | 1.1 – 1.6 |
500-100 | Слабый дождь | 191 - 28 | 1.6 – 11 |
100-50 | Туман | 28 – 7.6 | 11 – 40 |
50-10 | Тяжёлый фоㆆ | 7.6 – 0.3 | 40 – 1020 |
10-2 | Тонкий фоㆆ | 0.3 – 0.012 | 1020 - 25400 |
† - добавлено при переводе †† - (fog) - разновидность тумана, ухудшает видимость сильнее, чем туман (mist).
Способы распыления воды
правитьРаспыление – это образование капель воды при принудительной подаче её в сопло. Для распыления используются два способа.
- При гидравлическом или безвоздушном распылении (hydraulic or airless atomization) размер капель регулируется размером сопла и давлением жидкости. При этом используется высокое давление, и образуются капли маленького и среднего размера. Факел имеет форму веера с однородным распределением, полого конуса или сплошного конуса. Использование гидравлического распыления в большинстве случаев предпочтительно, так как оно дешевле из-за не использования сжатого воздуха.
- При воздушном распылении воды (air atomizing) капли образуются при разбивании жидкости сжатым воздухом. При этом давление жидкости меньше, и получаются капли маленького размера, равномерно распределённые в факеле. Но это более сложный и дорогой способ, так как для него требуется сжатый воздух. В большинстве случаев лучше располагать форсунки с воздушным распылением в тех местах, где частицы пыли очень маленькие, и форсунки должны быть как можно ближе к источнику пыли (хотя в некоторых случаях требуется использовать форсунки большой производительности так, чтобы они выпускали поток капель на большое расстояние – чтобы капли достигли облака пыли).
Добавки химических веществ, влияющие на размер капель
правитьПри распылении воды иногда в неё добавляют поверхностно-активные вещества, так как они уменьшают поверхностное натяжение, что приводит к:
- уменьшению размеров капель;
- увеличению числа капель (при одинаковом расходе воды); и
- уменьшению угла смачивания[2- 2] – угла Θ между поверхностью жидкости и твёрдой поверхностью в месте их контакта (Рис. 2.3).
При использовании поверхностно-активных веществ улучшается смачивание частиц пыли жидкостью и их обволакивание жидкостью, что приводит к уменьшению расхода жидкости, необходимого для того же самого результата, по сравнению с распылением воды без поверхностно-активных веществ. Для улучшения увлажнения и предотвращения попадания пыли в воздух в воду добавляют небольшое количество поверхностно-активных веществ, обычно в соотношении 1:700÷1:1500[2- 7]. Хотя добавки помогают снизить запылённость, но нужно сказать, что из-за нескольких ограничений при добыче и переработке металлических и неметаллических ископаемых их используют нечасто.
- Добавки значительно дороже воды, они могут влиять на свойства перерабатываемого вещества, и на свойства конечного продукта.
- Добавки могут повреждать оборудование – например конвейерные ленты.
- Использование поверхностно-активных веществ требует больших трудозатрат, чем использование воды без добавок.
- Из-за гидрофобности (притяжения молекул) минералов при добыче и переработке металлических и не металлических полезных ископаемых добавки малополезны – по сравнению с добычей угля (уголь гидрофильный, плохо смачивается[2- 8].
Эффективность добавок зависит от:
- Свойств химической добавки;
- Гидрофобных свойств частиц минеральной пыли;
- Размера частиц пыли;
- Концентрации пыли;
- Водородного показателя воды рН, и
- От минералов, которые присутствуют в используемой воде[2- 9].
Типы форсунок и форма факела
правитьВ зависимости от способа, используемого для распыления воды, и свойств получаемого факела капель, форсунки могут быть разных видов. Наиболее часто используемые форсунки дают полный конус, или полый конус; круг или полосу (веерный факел flat fan nozzle). Форсунки, использующие для распыления воды сжатый воздух, обычно дают круглый или веерный факел, а при гидравлическом распылении обычно получают полный или полый конус. Но некоторые форсунки с гидравлическим распылением тоже могут образовывать веерный факел.
Форсунки использующие сжатый воздух (пневматические)
правитьФорсунки, в которых для распыления жидкости используют сжатый воздух, иногда называют двухфазными (two-fluid nozzles), так как в них для распыления в поток жидкости вводится сжатый воздух. На Рис. 2.4. показаны две конструкции таких форсунок – с внешним и с внутренним смешиванием. В форсунках с внутренним смешиванием используется приспособление (an air cap), который смешивает потоки жидкости и газа внутри форсунки, так чтобы выбрасывалась распылённая вода, а в форсунках с внешним смешиванием приспособление (an air cap) смешивает потоки вне сопла форсунки. При внутреннем смешивании давление сжатого воздуха, распыляющее воду, направлено против давления жидкости, и дополнительно регулирует расход жидкости. При внешнем распылении давление сжатого воздуха не влияет на давление жидкости.
Форсунки с внутренним смешиванием могут создавать и круглый, и веерообразный факел, а форсунки с внешним смешиванием могут создавать веерообразный факел, как показано на Рис. 2.5.
При гидравлическом распылении вода проталкивается через отверстие (сопло) постоянного размера за счёт собственного высокого давления, что приводит к образованию капель. В зависимости от формы сопла форсунки могут быть получены капли разного размера и разная форма факела.
Гидравлические форсунки с полным конусом
правитьHydraulic Full Cone Nozzles
Гидравлические форсунки с полным конусом создают сплошной конусообразный факел, который имеет круглое поперечное сечение, что обеспечивает большую скорость на удалении от форсунки (Рис. 2.6). Такие форсунки создают капли большого и среднего размера в широком диапазоне расходов воды и её давления. Обычно их используют тогда, когда нужно снизить запылённость, а источник пыли находится на большом расстоянии от форсунки[2- 5].
Гидравлические форсунки с полым конусом
правитьHydraulic Hollow Cone Nozzles
Такие форсунки создают факел, который в поперечном сечении имеет кольцеобразную форму. Обычно форсунки с полым конусом обеспечивают меньший размер капель, чем другие гидравлические форсунки (при одинаковом расходе воды Рис. 2.7). Также у них больше диаметр сопла, что уменьшает риск его засорения. Гидравлические форсунки с полым конусом лучше использовать для улавливания пыли, попавшей в воздух, и они бывают двух типов по конструкции: с камерой, в которой жидкости придаётся вращательное движение, и с спиральным распылением (spiral sprays). У форсунок с вихревой камерой в большинстве случаев распыление жидкости происходит под прямым углом по отношению к направлению входящего потока. Но существуют форсунки и без изменения направления потока. Форсунки обеих конструкций создают более однородные потоки капель меньшего размера (Рис. 2.7). Если нужен больший расход воды, используют форсунки со спиральным распылением. Из-за большего размера отверстий уменьшается риск засорения. У таких форсунок распределение капель менее однородное, и размер капель больше (Рис. 2.8)[2- 5].
Гидравлические форсунки с веерообразным факелом
правитьHydraulic Flat Fan Nozzles
Гидравлические форсунки с веерообразным факелом создают относительно большие капли в широком диапазоне расходов жидкости и углов раскрытия факела, и обычно они используются в ограниченном пространстве (Рис. 2.9). Такие форсунки также используются для смачивания материала для предотвращения попадания пыли в воздух. Эти форсунки бывают трёх конструкций – сужающиеся на краях (tapered), постоянной ширины (even) и с отклонением факела (deflected)[2- 5].
В таблице 2.2 приводятся некоторые из часто встречающихся областей применения и типичные эксплуатационные параметры используемых форсунок.
Тип форсунки | Пневматическая форсунка | Гидравлическая с дроблением на мелкие капли | Гидравлическая с полным конусом | Гидравлическая с полым конусом | Гидравлическая с веерным факелом |
---|---|---|---|---|---|
Типичное давление воды | 69-413 кПа | 207-6895 кПа | 69-2069 кПа | 34-690 кПа | 69-3448 кПа |
Типичное давление воздуха | 69-483 кПа | - | - | - | - |
Улавливание пыли, попавшей в воздух | |||||
Щековые дробилки | + | + | + | ||
Места погрузки | + | + | |||
Первичные места хранения | + | + | |||
Места перегрузки | + | + | |||
Предотвращение попадания пыли в воздух | |||||
Перегружатели | + | + | |||
Места хранения | + | + | |||
Места перегрузки материала | + | + | + | ||
Дороги | + |
На Рис. 2.10 показано типичное использование распыления воды с целью предотвращения попадания пыли в воздух и улавливания витающей пыли в месте выгрузки материала. В процессе выгрузки пыль попадает в воздух и в верхней части укрытия, и при ударе падающего материала об уже лежащий. Форсунки для улавливания пыли, попавшей в воздух, устанавливаемые в верхней части укрытия, могут быть или пневматическими, или такими гидравлическими, которые дают мелкие капли воды (с полым конусом). А форсунки для предотвращения попадания пыли в воздух, устанавливаемые в нижней части укрытия, могут быть гидравлическими (так как они дают капли большего размера), например – с полным конусом, что позволить орошать большую площадь.
На Рис. 2.11 показано применение распыления воды для снижения запылённости при перемещении и сбросе материала с конвейера – как за счёт увлажнения, так и за счёт улавливания витающей пыли. В этом случае форсунки для увлажнения материала (для предотвращения попадания пыли в воздух) устанавливают над несущей стороной конвейера. А форсунки для улавливания пыли, попавшей в воздух, устанавливают в местах сброса и перегрузки.
На Рис. 2.12 показано, насколько хорошо форсунки разных конструкций позволяют улавливать пыль при разных давлениях. Видно, что пневматические форсунки – самые эффективные, а следующие – гидравлические с полым конусом. При добыче и переработке полезных ископаемых форсунки с полым конусом будут самыми подходящими из-за того, что они охватывают большую площадь (при увлажнении), но не сильно увлажняют материал. Эти форсунки наиболее применимы на первых стадиях переработки материала, когда увеличение его влажности не так важно. Форсунки с веерным факелом лучше всего применять в ограниченном прямоугольном пространстве, так как это приводит к меньшей потере воды (которая при использовании форсунок с круглым факелом частично попадала бы на породу или на металлические поверхности, находящиеся рядом.
Техобслуживание оборудования, используемого для распыления воды
правитьКачество воды
правитьПри борьбе с пылью с помощью распыления воды одним из важнейших обстоятельств является её качество. В первую очередь имеет значение наличие твёрдых загрязнений и её жёсткость. Если в имеющейся воде содержится много минеральных веществ, сопла будут ускоренно изнашиваться. В этом случае нудно рассмотреть возможность использования сопел из нержавеющей стали. Использование такой воды также может привести к засорению карбонатами, и увеличить расходы на техобслуживание. Хотя может оказаться невозможно изменить жёсткость используемой воды, но хорошо спланированная и проводимая программа обслуживания позволит свести к минимуму отрицательные последствия большого содержания минеральных веществ в воде.
Если сопла форсунок засоряются грязью или осадком, обеспыливающая система становится неэффективной. Так как при переработке полезных ископаемых в большинстве случаев воду для распыления берут из прудов-отстойников, то чистота воды имеет большое значение. Для предотвращения засорения форсунок осадком и грязью рекомендуется использовать системы фильтрации воды. Большинство компаний, продающих системы мокрого обеспыливания, также предлагают для них системы фильтрации воды.
Для эффективного снабжения системы мокрого обеспыливания водой рекомендуется использовать для этого отдельную специальную систему подачи воды. В такой системе питания есть насос, который подаёт требуемое количество воды при соответствующем давлении, фильтр на входе, выключатель (для предотвращения работы насоса без воды), манометр, ручной регулятор расхода воды, перекрывающий кран с ручным управлением, и панель управления (для включения вручную или по сигналам таймера). На Рис. 2.13 показана типичная система снабжения водой.
Системы подачи воды могут быть разной степени сложности – от простых, подающих постоянное количество воды, до более сложных, реагирующих на изменение условий работы изменением расхода подаваемой воды. Современные технологии позволяют определять параметры работы (концентрацию пыли и др.) и автоматически изменять расход и давление воды, подаваемой в форсунки для снижения запылённости.
В тех случаях, когда качество воды плохое, и когда в воде содержится много загрязнений (например – при использовании воды из прудов-отстойников), требуется дополнительная фильтрация. Для этих случаев рекомендуют использовать двойной сетчатый фильтр (duplex basket strainer). В таком фильтре есть две фильтрующие сетки (похожие по форме на корзинки), и переключаемый вручную клапан, позволяющий использовать для очистки воды какой-то один из фильтров – в то время, как другой проходит очистку. Сетка фильтра выбирается с учётом размеров частиц, загрязняющих воду. Сетка задерживает такие частицы, которые могут засорить сопло форсунки. Поэтому размер ячеек сетки должен быть меньше размеров таких частиц, которые больше отверстий в форсунке. На Рис. 2.14 показана типичная система с двойным фильтром.
Техобслуживание форсунок
правитьФорсунки требуют техобслуживания, регулярных проверок, очистки, и даже замены для обеспечения качества конечного продукта, и обеспечения его производства с приемлемыми затратами. Периодичность и характер техобслуживания зависят от конкретных условий. В каких-то случаях форсунки могут продолжать нормально работать после сотен часов эксплуатации, в других требуют ежедневного обслуживания; а в большинстве случаев наблюдается что-то среднее. Как минимум, форсунки должны регулярно визуально осматриваться для обнаружения повреждения. Проведение дополнительного техобслуживания зависит от условий использования, качества воды и материала, из которого они изготовлены.
Разрушение и износ
правитьПри постепенном истирании и уносе материала с поверхностей каналов форсунки диаметры последних с течением времени становятся больше и их форма нарушается (Рис. 2.15), что влияет на расход воды, давление и свойства факела.
Коррозия
правитьХимическое взаимодействие распыляемой жидкости или окружающей атмосферы и форсунки приводит к коррозии материала форсунки (Рис. 2.16).
Засорение
правитьНежелательные загрязнения воды и другие взвешенные вещества могут отлагаться на стенках водяных каналов, сужая их, и нарушая равномерность распределения распыляемой воды.
Отложение растворённых веществ
правитьОтложение веществ, растворённых в воде (при её испарении) на внутренних стенках каналов форсунки создаёт слой твёрдых отложений и уменьшает отверстие для прохода жидкости (Рис. 2.17).
Повреждение при нагреве
правитьНагрев может повредить детали форсунок, сделанные из материала, не предназначенного для применения при высокой температуре (Рис. 2.18).
Некачественная сборка
правитьИспользование неровных прокладок, чрезмерная затяжка и другие недостатки сборки могут привести к утечкам, и нарушить нормальную работу системы распыления жидкости.
Случайное повреждение
правитьПри установке и очистке может произойти непреднамеренное, случайное повреждение форсунки из-за использования неподходящего инструмента (Рис. 2.19).
Проверка работы форсунок
правитьОдного только визуального осмотра недостаточно для определения того, насколько хорошо работает форсунка. Наконечники сопел (на Рис. 2.18 и 2.19) показывают, что износ (который не всегда заметен) может влиять на работу форсунок.
Проверка работы оборудования
правитьИз-за ряда возможных проблем, необходимо регулярно проводить проверку работы систем распыления воды, и учитывать при этом ряд обстоятельств.
- Для оценки эффективности или при проведении измерений для конкретного случая использования газоочистного оборудования требуется или визуально оценивать концентрацию пыли в воздухе для определения эффективности распыления воды в отношении снижения запылённости, или проводить измерения концентрации пыли в воздухе. Под визуальным наблюдением имеется в виду просто осмотр места образования пыли для определения того, позволяет ли распыление воды обеспечить низкую запылённость. Так как это метод не позволяет количественно определить концентрацию пыли, субъективен и зависит от интерпретации наблюдателя, то он не позволяет точно определить эффективность работы оборудования. Разработаны и доступны приборы для измерения концентрации пыли, которые позволят более точно определить эффективность системы.
- Расход жидкости. Так как визуально определить увеличение расхода невозможно, то расход жидкости через каждую форсунку нужно определить или с помощью расходомера, или путём сбора распыляемой жидкости в ёмкость. Затем нужно сравнить результаты с паспортными техническими характеристиками форсунок, или с результатами измерений у новых форсунок.
- Давление жидкости. для определения давления жидкости в сопле форсунки нужно использовать подходящий и откалиброванный манометр.
- Равномерность распределения воды в факеле. Во многих случаях визуальное наблюдение позволяет (достаточно хорошо) оценить равномерность распределения воды в факеле. Изменения, вызванные износом или засорением, или отложением растворённых веществ, обычно заметные. Но для обнаружения постепенного износа сопла нужно использовать специальное оборудование. Для сравнения расходов воды у новой и старой форсунок при определённом одинаковом давлении может использоваться расходомер. Износ сопла приводит к увеличению расхода так, что показания расходомера позволяют количественно оценить износ.
- Направление факела форсунки. Для равномерного орошения вода должна распыляться в правильном направлении – по отношению друг к другу (так, чтобы оси факелов были параллельны).
.
ССЫЛКИ
- ↑ USBM [1987]. Dust control handbook for mineral processing.. Date accessed: December 13, 2008. U.S. Department of the Interior, Bureau of Mines. Contract No. J0235005. NTIS No. PB88–159108.
- ↑ а б в г Blazek CF [2003]. The role of chemicals in controlling coal dust emissions. Presented at the American Coal Council PRB Coal Use: Risk Management Strategies and Tactics Course. Dearborn, Michigan, June 2003.
- ↑ Rocha E [2005a]. PowerPoint presentation slide # 30 presented by E. Rocha, General Manager, Spraying Systems do Brasil Ltda. Spray Technology Workshop for Pollution Control at Spraying Systems do Brasil Ltda, Sao Bernardo do Campo, Brazil.
- ↑ Rocha E [2005b]. PowerPoint presentation slide # 43 presented by E. Rocha, General Manager,Spraying Systems do Brasil Ltda. Spray Technology Workshop for Pollution Control at Spraying Systems do Brasil Ltda, Sao Bernardo do Campo, Brazil.
- ↑ а б в г Bartell W, Jett B [2005]. The technology of spraying for dust suppression. Cement Americas, May/June pp. 32–37.
- ↑ NDT Educational Resource Center, Iowa State University. Ссылка. Date accessed: February 13, 2009.
- ↑ Swinderman RT, Goldbeck LJ, Marti AD [2002]. Foundations 3: the practical resource for total dust & material control. Neponset, Illinois: Martin Engineering Library.
- ↑ а б NIOSH [2003]. Handbook for dust control in mining. By Kissell FN. Pittsburgh, PA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, NIOSH Information Circular 9465, DHHS, (NIOSH) Publication No. 2003–147.
- ↑ Rocha E [2005c]. PowerPoint presentation slide # 75 presented by E. Rocha, General Manager, Spraying Systems do Brasil Ltda. Spray Technology Workshop for Pollution Control at Spraying Systems do Brasil Ltda, Sao Bernardo do Campo, Brazil.
- ↑ SSCO (Spraying Systems Co.) 2006. A guide to safe and effective tank cleaning. Ссылка.
- ↑ а б в г д Schick R [2006]. Spray technology reference guide—understanding drop size. Ссылка.
- ↑ SSCO (Spraying Systems Co. Catalog 70). Industrial spray products. Ссылка.
- ↑ SSCO (Spraying Systems Co.) 2003. Spray optimization handbook TM–410. Ссылка.
ГЛАВА 3. Бурение и взрывные работы
правитьДля проведения взрывных работ при добыче полезных ископаемых используют бурение – и на поверхности, и в шахтах. Отличия в условиях проведения буровых работ приводят к некоторым отличиям технологии их выполнения. Давно и хорошо известно, что бурение является причиной загрязнения воздуха респирабельной пылью, которая может оказывать сильное негативное воздействие и на операторов буровой установки, подсобных рабочих, и других людей, находящихся поблизости. Поэтому при бурении требуется принимать меры для уменьшения концентрации пыли, и для этого могут использоваться сухие и мокрые способы.
Для защиты операторов буровых установок от респирабельной пыли, образующейся при бурении, всё чаще используют герметичные кабины с подачей отфильтрованного воздуха. Это более подробно обсуждается в главе 9 “Кабины операторов, пульты управления и кабины мобильного оборудования”. Использование “искусственной” атмосферы в кабине для защиты оператора от загрязнённой атмосферы очень эффективно. Но защита обеспечивается лишь до тех пор, пока люди находятся в кабине, и только для этих сотрудников. Это не позволяет защитить других людей, работающих вблизи буровой установки (подсобных рабочих, взрывников (shotfirer), слесарей и др. Они могут попробовать защититься от респирабельной пыли за счёт перемещения на ту сторону, с которой ветер дует на источник пыли, но это не всегда выполнимо на практике. Поэтому сохраняется потребность в уменьшении концентрации пыли около буровой установки.
Для этого используют два основных способа: или мокрое пылеподавление, или использование циклона и тканевого фильтра (сухой способ). При использовании мокрого способа вода подаётся (распыляется) в воздух, поступающий в полый стержень бура, и при обратном движении между стенками пробуренной скважины и буровой колонной она улавливает пыль. При использовании сухого способа в месте входа бура в землю/ размещается укрытие, и запылённый воздух отсасывается из-под укрытия в пылеуловитель. После очистки воздух выбрасывается в атмосферу. При эффективном использовании и мокрого, и сухого способа снижения запылённости, можно добиться низкой концентрации пыли на рабочих местах.
В этой главе сделан обзор эффективных методов снижения запылённости при бурении и на поверхности, и под землей. За последнее столетие было проведено много исследований методов снижения запылённости. Исследования проводилось в 1920-1950г - тогда Горное Бюро (U.S. Bureau of Mines) проводило программу по предотвращению силикоза среди шахтёров. Хотя те исследования могут казаться сейчас устаревшими, принципы (снижения запылённости) сохранились, применяются сейчас и эффективны. Кроме того, многие из результатов, полученных для подземного бурения, стали использоваться при бурении на поверхности. Исследования снижения запылённости при бурении на поверхности началось в ~ 1980г, когда было признано, что у операторов поверхностных буровых установок чаще развивается силикоз. Для разработки новых методов снижения запылённости при бурении и на поверхности, и под землёй продолжают проводиться новые исследования.
Снижение запылённости при бурении на поверхности
правитьДля бурения скважин на поверхности используется как вращающийся, так и ударный метод. При использовании вращающегося способа разрушение породы происходит под действием сильного давления вращающегося сверла, прикреплённого к концу колонны буровых труб. При ударном бурении разрушение породы происходит за счёт давления и вращения, но с использованием сжатого воздуха, который действует на поршень отбойного молотка, который ударяет по наконечнику или по колонне буровых труб. Эти удары делают ненужным большое давление, используемое при вращательном бурении.
Типичный диаметр скважины достигает 38 см (15 дюймов). Скважины большого диаметра обычно получают вращательным бурением. Обычно такие скважины вертикальные, хотя иногда используют и наклонные, а для проведения взрывных работ скважины могут бурить так, чтобы они располагались в ряд, ровно. Для бурения может использоваться различное оборудование – от маленьких буровых установок на шасси трактора, до больших на гусеничном ходу (Рис. 3.1).
Для снижения запылённости на поверхности используют или мокрый, или сухой способ. В зависимости от условий работы и применяемого оборудования эти методы могут использоваться в разных вариантах. Но общие принципы снижения запылённости, описанные в этой главе, применимы для всех случаев бурения на поверхности, включая использование маленьких буровых установок на гусеничном ходу; буровых установок (“среднего” размера), размещённых на тракторах; и больших установок на гусеничном ходу.
Мокрое бурение
правитьПри бурении на поверхности лучший способ уменьшить запылённость – мокрое бурение. При таком способе вода подаётся в воздух, движущийся внутри полого сверла, и затем выходит наружу между сверлом и стенками скважины, улавливая пыль (Рис. 3.2). Измерения показали, что это позволяет снизить концентрацию пыли на 96%[3- 1].
Для эффективного снижения запылённости нужно, чтобы оператор следил за подачей воды. Расход воды при этом способе небольшой – обычно 0.4÷7.6 л/мин (0.1÷2.0 gpm), но он зависит от типа сверла, геологических условий и уровня влажности разрушаемого материала. Например, измерения (проводившиеся при бурении на поверхности) показали, что при увеличении расхода воды с 0.8 до 2.4 л/мин происходит значительное снижение запылённости. Но после того, как в том конкретном случае проведения измерений, расход достиг 3.8 л/мин, возникли новые проблемы: наконечник сверла стал засоряться, и сверло стало трудно вращать из-за того, что мокрый разрушенный материал стал слишком тяжёлым для выдувания из скважины, и стал засорять пространство между сверлом и стенками скважины[3- 1]. Таким образом, подача слишком большого количества воды создаёт дополнительные проблемы. Расход воды, которую нужно подавать, зависит от типа сверла и от свойств разрушаемого материала.
Для снижения запылённости мокрым способом на шасси устанавливают бак с водой, откуда она подаётся в воздух, идущий в полом стержне бура для удаления частиц разрушенной породы из скважины. Капли воды улавливают частицы пыли, и они вместе выходят из скважины в пространстве между её стенками и буровой колонной. Это приводит к снижению запылённости рядом с местом проведения буровых работ. Подача воды контролируется оператором буровой установки из кабины, и в некоторых кабинах ставят расходомер для определения расхода воды.
Преимущества бурения мокрым способом
Потенциальным преимуществом использования воды для уменьшения запылённости может быть (помимо лучшего улавливания пыли) увеличение скорости бурения (при бурении на поверхности). (Но) информации о том, как влияет подача воды на скорость бурения – очень мало, и известно, что использование воды при подземном бурении в шахтах может повысить скорость бурения[3- 2][3- 3]. Так как это происходит при подземном бурении, это может проявляться и при бурении на поверхности. Требуется дополнительная проверка, чтобы можно было окончательно определить, может ли мокрое бурение увеличить скорость бурения на поверхности.
Рекомендации при использовании мокрого бурения
На основе результатов измерений и наблюдений за лучшим применением мокрого бурения, разработаны следующие рекомендации по его применению:
- Чтобы расход воды был близок к максимальному, оператор должен плавно увеличивать подачу воды до тех пор, пока не перестанет наблюдаться визуально заметный выброс пыли. Увеличение подачи воды выше этого количества не приведёт к сколько-нибудь значительному уменьшению запылённости, но скорее всего создаст эксплуатационные проблемы – ускоренное разрушение наконечника сверла (при использовании трёхшарошечного долота), возможное “заедание” сверла. А подача меньшего количества воды уменьшит эффективность пылеподавления.
- Важно увеличивать подачу воды постепенно, и с задержкой по времени (на тот период, который требуется для подъёма смеси воды и воздуха из скважины до поверхности).
- При бурении нужно непрерывно следить за расходом воды, чтобы её подача была оптимальной для снижения запылённости и чтобы не произошло засорения пространства между сверлом и скважиной.
- Используемая вода должно фильтроваться, чтобы грязь, содержащаяся в воде, не засорила систему мокрого пылеподавления при.
- При работе при температуре воздуха, меньшей 0°С, во время бурения система должна подогреваться, а при (длительных) перерывах вода должна сливаться. В большинстве буровых установок расположение ёмкости с водой вблизи двигателя и гидравлической системы оказывается достаточно для того, чтобы предотвратить замерзание во время работы – за исключением очень низкой температуры воздуха. Когда бурение не проводится, вода должна сливаться и из бака, и из водопроводных труб установки.
Недостатки мокрого бурения
Если при ударном бурении у этого способа есть преимущества, то при использовании вращательного бурения проявляются его недостатки. Подача воды ускорят износ трёхшарошечного долота, и уменьшает его срок службы в 2 раза и более[3- 4]. Это происходит из-за быстрого разрушения материала (подшипника / bearing), из-за водородного охрупчивания, и из-за ускоренного истирания наконечника. Истирание наконечника вызвано работой в условиях абразивной среды – смеси разрушенной породы и воды.
Для решения проблемы сокращения срока службы при мокром бурении можно подавать воду так, что она не дойдёт до наконечника. Для этого оптимизируют подачу воды, и используют сепарацию. По данным Горного Бюро (Bureau of Mines, BOM) при бурении в монцоните, песчанике, известняке и железной руде (данные собирали 14 лет) замена наконечников буров проводилась в среднем через 591 метр (без сепарации воды), а при сепарации срок службы возрастал примерно в 4.5 раз и замена в среднем проводилась через ~ 2 743 м[3- 5].
Сепаратор воды
Для отделения воды используется специальное приспособление (water separation sub). Для удаления подаваемой воды из воздуха, закачиваемого для извлечения из скважины разрушенного при бурении материала, в нём используется инерция. Для отделения воды между наконечником и колонной буровых труб устанавливают “воротник” (collar assembly), у которого с обеих сторон есть резьба, позволяющая присоединить его и к трубам, и к наконечнику. Обычно у этого приспособления есть “стабилизатор” – кольца на наружной стороне, которые используются для обеспечения положения бура по оси скважины.
Для отделения воды подаваемый воздух принуждают совершить резкий поворот немного выше буровой коронки (см. Рис. 3.3). Смесь воды и воздуха проходит через центр буровых труб, опускается ниже напорной трубы (standpipe), и разворачивается на 180º около ёмкости с водой. Затем воздух двигается вверх вне напорной трубы, проходит в напорную трубу через пазы, и разворачивается вниз, двигаясь внутри напорной трубы. Затем воздух выходит через сопла на буровой коронке. Из-за того, что масса и инерция у воды больше, чем у воздуха, она не может развернуться – как воздух – и отделяется от него. Так как внутри буровых труб избыточное давление воздуха, то вода выходит наружу через отверстия для выпуска воды. Эти отверстия находятся по периметру сепаратора выше буровой коронки. Вода попадает в кольцевое пространство между стенками скважины и буровыми трубами. Все сдуваемые воздухом кусочки разрушенной породы поднимаются вверх и проходят через это же кольцевое пространство, где увлажняются. Это не позволяет воде попасть на буровую коронку, и предотвращает образование смеси жидкости и разрушенной породы в месте разрушения последней.
Испытания показали, что при использовании сепаратора улавливается до 98% пыли, а без него – до 96%[3- 4]. Более важно то, что увеличивается срок службы буровых коронок.
Сухое бурение
правитьПри сухом бурении снижение запылённости происходит без использования воды. Для улавливания пыли используют оборудование, находящееся на буровой установке снаружи скважины. Такое оборудование может работать в разных климатических условиях, и оно не замерзает при низкой температуре. Снижение концентрации пыли может достигать 99% при исправном состоянии и правильном использовании[3- 1]. Конструкция пылеулавливающего оборудования может быть разной, и она зависит от размера буровой установки.
Пылеулавливающие установки для бурового оборудования среднего и большого размера.
На Рис. 3.4 показана типичная сухая пылеулавливающая система, используемая при бурении скважин большого и среднего диаметра. Пыль попадает в воздух при продувке скважины сжатым воздухом (для удаления разрушенной породы), который подаётся через полые буровые трубы к буровой коронке (на Рис. 3.2 показано схожее изображение, но там добавляется вода). При нормальной работе разрушенная порода и пыль попадают в укрытие, которое закрывает место входа буровых труб в породу. А запылённый воздух удаляется из укрытия отсасывается и направляется в пылеуловитель. Вентиляционная система включает в себя вентилятор и тканевый фильтр, регенерация ткани в котором обычно осуществляется импульсной продувкой сжатым воздухом через определённые интервалы времени. При этом уловленная пыль сбрасывается в бункер пылеуловителя.
Источники пыли в пылеулавливающей системе
Если в пылеуловителе повреждены, или отсутствуют некоторые из тканевых фильтров (рукавов и т.п.), то это приводит к (значительному) выбросу пыли из пылеуловителя. Другие источники пыли – повреждённое или изношенное укрытие места входа буровых труб в породу, или условия работы, мешающие укрытию удерживать выходящий из скважины запылённый воздух.
У больших и средних буровых установок большое значение имеет целостность “юбки” (гибкого ограждения платформы буровой установки) и её плотное прижатие к земле. Более половины пыли, попадающей в воздух при работе буровой установки, выходит из-под ограждения укрытия и через отверстие в платформе, через которое движутся буровые трубы[3- 6]. Если между ограждением и землёй есть зазоры или щели размером более 15 см (6 дюймов), эффективность улавливания пыли значительно снизится[3- 7][3- 8]. При сухом бурении выявлено три (основных) источника пыли:
- Утечки через ограждение,
- Образование пыли при её выгрузке из пылеуловителя, и
- Утечки через отверстие в буровой платформе, через которое движутся буровые трубы.
Предотвращение утечек из укрытия
За исключением тяжёлых карьерных буровых установок на гусеничном ходу (air track drills), у большинства буровых установок схожая конструкция, и схожий расход отсасываемого воздуха. Единственным отличием является площадь зазоров, через которые может происходить утечка пыли, и это заметно влияет на эффективность пылеулавливающей системы. Чаще всего зазоры образуются между нижней частью ограждения и землёй – из-за неровного или наклонного положения буровой платформы, и по углам буровой платформы.
Прямоугольное ограждение.
У некоторых ограждений есть зазоры по углам на передней стороне ограждения, которое может подниматься гидравлическими цилиндрами для предотвращения вытаскивания разрушенной породы в отверстие в буровой платформе при подъёме буровой колонны. Так как большинство ограждений буровых платформ – прямоугольной формы, и сделаны из четырёх отдельных резиновых частей, прикреплённых к буровой платформе, просачивание запылённого воздуха наружу может произойти при образовании зазоров между частями ограждения. Для предотвращения этого добавляют угловые щитки, прикреплённые к кронштейнам, которые помогают сохранить герметичность укрытия (см. Рис. 3.5), или ограждение делают из одного куска материала (прорезиненной ленты) так, чтобы оно охватывало платформу по периметру.
Круглое ограждение
При сухом бурении иногда используют круглое ограждение буровой платформы – для улучшения изоляции источника пыли от окружающей атмосферы. Круглое ограждение не цилиндрическое, а немного коническое по форме, и у него нет открытых зазоров (как у прямоугольного – между отдельными листами). Для его крепления к нижней части буровой платформы используется стальная лента. Такое ограждение может подниматься и опускаться с помощью гидравлического привода. Для придания нижней части ограждения круглой формы и для прижатия его к земле внизу также крепится стальная круглая лента. К этой тяжёлой ленте крепятся тросики, ведущие к гидроцилиндрам для подъёма ограждения (см. Рис. 3.6). Чтобы ограждение было гибким, его делают из тонкого листа резины, и в ограждении делают маленькое отверстие для доступа, позволяющее выгружать лопатой разрушенную породу – без ухудшения изоляции источника пыли.
При бурении скважины может образовываться много разрушенной породы, и из-за этого может потребоваться поднимать круглое ограждение для предотвращения ссыпания разрушенной породы обратно в скважину. Поэтому иногда нельзя избежать образования зазоров между ограждением и землёй, или разрушенной породой. Нужно, чтобы оператор буровой установки понимал, и старался уменьшить зазоры до минимума. Для этого может потребоваться часто визуально проверять – в каком состоянии находится пространство под платформой, для чего (приходится) поднимается ограждение.
Отношение расходов воздуха – подаваемого для продувки скважины, и отсасываемого для улавливания пыли
Для эффективного снижения запылённости сухим способом нужно определённое соотношение между расходами воздуха: сжатого, подаваемого для уноса разрушенного материала из скважины, и отсасываемого пылеуловителем. Это отношение расходов обозначают QC/QB, и практика показала, что оно является важным индикатором эффективности системы обеспыливания. Расход воздуха пылеуловителя (QC) м3/час (standard cubic feet per minute, scfm) – расход воздуха у вентилятора пылеулавливающей системы, которая всасывает запылённый воздух из-под ограждения буровой платформы. А расход продувочного воздуха (bailing airflow, QB), м3/час (scfm) – расход сжатого воздуха, подаваемого в скважину к буровой коронке для удаления разрушенной породы из скважины.
Расход продувочного воздуха QB можно узнать у изготовителей бурового оборудования (это расход воздуха у компрессора буровой установки), а для измерения расхода воздуха пылеулавливающей системы лучше использовать анемометр с нагретой проволокой, или с крыльчаткой, или трубку Пито (в месте выхода воздуха из вентилятора пылеулавливающей системы). Для более точных измерений к месту выхода воздуха из пылеулавливающей системы можно прикрепить короткую (~1.2 м 4-foot) трубу, и поместить в неё анемометр – в середине трубы. Такую трубу нетрудно сделать из картона и присоединить её к выходному отверстию вентиляционной системы. Результат измерений можно привести к стандартным атмосферным условиям, но это не обязательно, так как коррекция на внешние условия обычно даёт небольшое изменение. Кроме того, расход воздуха через тканевый фильтр зависит от количества накопившейся пыли, и потому непостоянен – так, что это непостоянство заметно больше, чем поправка на отличие от стандартных атмосферных условий.
Обычно отношение расходов отсасываемого воздуха к подаваемому сжатому составляет до 3:1. Но при работе фильтров при обычной запылённости чаще всего встречается отношение 2:1[3- 9]. Оказалось, что у плохо работающих систем обеспыливания отношение расходов составляет 1:1 и меньше. Измерения показали, что при увеличении отношения расходов вынос пыли через зазоры между ограждением и землёй значительно уменьшается[3- 10][3- 11]. На Рис. 3.7 показано влияние изменения отношения расходов при разном размере зазоров на концентрацию пыли, мг/м3. Как видно, наибольшее снижение концентрации пыли получается при увеличении отношения расходов с 2:1 до 3:1, а при увеличении до 4:1 концентрация пыли становится ещё ниже.
Обеспечение оптимального отношения расходов воздуха для снижения запылённости
Для предотвращения выбросов пыли необходимо обеспечить оптимальное отношение расходов воздуха – отсасываемого вентиляционной системой и сжатого, подаваемого для удаления разрушенной породы. Расход воздуха компрессора – это максимальный расход, и обычно он слабо изменяется с течением времени при эксплуатации буровой установки. Поэтому влияние (его изменения) на отношение расходов незначительно (по сравнению с влиянием непостоянства расхода отсасываемого воздуха). Проведение обычного техобслуживания компрессора, как того требует руководство по его эксплуатации, позволяет поддерживать расход сжатого воздуха в рабочем диапазоне.
А расход воздуха пылеуловителя влияет на отношение расходов сильнее, так как на изменение этого расхода влияет много факторов. Расход воздуха у пылеуловителя с течением времени может снизиться из-за повреждения составных частей системы и недостаточно хорошего техобслуживания. При техобслуживании оператор должен:
- Проверить, что обратная продувка фильтров работает нормально, и что её параметры соответствуют паспортным.
- Проверить, что воздуховоды герметично присоединены, и что в них нет отверстий.
- Заменять фильтры – или при повреждении, или через рекомендуемые периоды.
- Проверить, что воздуховоды и входное отверстие пылеуловителя – свободны, не загорожены.
- Проверить, что вентилятор пылеуловителя нормально работает, и частота вращения соответствует паспортной.
Использование отношения расходов воздуха для снижения запылённости
Знание отношения расходов воздуха позволяет предсказать степень загрязнённости воздуха при работе буровой установки, и оценить возможное снижение концентрации пыли путём измерения нескольких основных параметров бурения скважины. Требуемыми параметрами являются: расход воздуха пылеуловителя QC, расход сжатого продувочного воздуха QB, площадь поперечного сечения ограждения буровой платформы AS, и площадь зазоров AL, или приближённая оценка этой площади[3- 12][3- 13].
Показанная на Рис. 3.8 модель (вверху) иллюстрирует относительное снижение, которое можно получить при уменьшении площади зазоров[3- 12][3- 13]. Чтобы показать, как использовать график, ниже приводится пример.
Оператор работает на буровой установке, размер платформы которой 1.2 на 1.5 м (4×5 feet). Паспортный расход воздуха компрессора QB 122.7 л/сек (260 scfm), а измеренный расход воздуха у пылеуловителя QC 250 л/сек (530 scfm). Это соответствует отношению расходов QC/QB ≈ 2. Площадь поперечного сечения укрытия вычисляется как произведение длины платформы на её ширину – 1.86 м2 (20 ft2). Площадь зазоров AL вычисляется умножением высоты зазора (LH) на длину периметра ограждения, что даёт AL = LH x 5.5 м (LH x 18 ft). Таким образом, отношение AS / AL = 1.86/(5.5×LH) {20 ft /(LH x 5.518 ft)}, и можно оценить отношение площадей с помощью LH.
Так как отношение расходов QC/QB = 2, то можно использовать верхние графики с Рис. 3.8 для определения влияния уменьшения зазоров на запылённость. При зазоре 36 см (14 inches) отношение площадей AS/AL = 0.95, что соответствует концентрации респирабельной пыли около 16 мг/м3, а при зазоре 5 см (2 inches) отношение площадей AS/AL = 6.7, и концентрация респирабельной пыли около 5 мг/м3. Этот пример показывает, что уменьшение зазоров уменьшает концентрацию респирабельной пыли.
Нужно отметить, что при оценке площади зазоров в неё нужно включать и вертикальные зазоры между листами ограждения, но во многих случаях такие зазоры могут быть незначительными. Графики для отношения расходов QC/QB > 2 схожи с показанными. Но концентрация респирабельной пыли при любом значении отношения AS/AL будет меньше, так как отношение расходов воздуха QC/QB возросло[3- 12]. Это видно из сравнения двух графиков на Рис. 3.8.
Важно не забывать, что вычисленное значение концентрации респирабельной пыли – это всего лишь относительное значение, и (эта величина) не так важна, как отношение площадей AS/AL. Важно определить, к какому участку графика относится режим работы буровой установки (это зависит от отношения площадей AS/AL), и какой из графиков нужно использовать (то есть – значение QC). Эти сведения позволят определить, какое (среднее) долговременное улучшение можно получить, если увеличить расход воздуха у пылеуловителя (например – за счёт установки чистых фильтров, или установки пылеуловителя большего размера), или если уменьшить зазоры.
Например, у буровой установки, режим работы которой попадает на левую сторону графиков на Рис. 3.8 можно значительно снизить запылённость. Если режим работы буровой установки попадает на правую сторону графиков, то достижимое уменьшение запылённости будет небольшим. Но то, что режим работы соответствует этой части графиков показывает, что работа буровая установка ведётся при эффективном снижении запылённости[3- 13]. Как уже упоминалось, при загрязнённых фильтрах и обычных производственных условиях отношение расходов QB примерно равно 2. Поэтому при бурении скважин на поверхности нужно стараться обеспечивать отношение расходов не ниже 2, и желательно увеличить его до 3 и более.
Полки для изменения движения воздуха Air-Blocking Shelf
При бурении поверхностных скважин большого и среднего размера с помощью буровых установок на гусеничном ходу оказалось, что можно эффективно уменьшить запылённость воздуха с помощью горизонтальных полок, влияющих на движение воздуха в укрытии. Использование таких полок может позволить снизить запылённости у любой большой буровой установки, у которой минимальный размер укрытия не меньше 1.2 на 1.2 м (4×4 feet). Полки шириной 15 см (6 inch) устанавливают в укрытии по периметру ограждения. Они предназначены для уменьшения выноса пыли из укрытия во время работы буровой установки. Разработка этого средства снижения запылённости проводилась на основе наблюдений за характером движения воздуха в укрытии испытательной буровой установки[3- 14][3- 15].
При бурении и использовании обычного укрытия воздух движется в нём так, как показано на Рис. 3.9 слева, и он определяется движением продувочного воздуха и влиянием вытяжки. Продувочный воздух движется (вверх) от отверстия скважины через среднюю часть укрытия (на уровне полок), сохраняя направление движения вдоль буровой трубы к нижней поверхности буровой платформы. У нижней поверхности буровой платформы за счёт эффекта Коанда (струя текущей жидкости или газа склонны “прилипать” к поверхности, с которой они встретились). Струя загрязнённого воздуха выходит из скважины, движется вверх до площадки буровой платформы, расходится в стороны веером по нижней стороне площадки буровой платформы, и по достижении её краёв движется вниз вдоль стенок ограждения. Всё это движение происходит при большой скорости. Вынос пыли из укрытия в месте его контакта с землёй происходит при столкновении потока воздуха с ней и последующего вытекания из укрытия через зазор между ограждением и землёй.
Полка шириной 15 см (6 inch), установленная по периметру ограждения, нарушает (описанный выше) характер движения воздуха. Она перенаправляет поток воздуха к центру укрытия так, что поток загрязнённого воздухе не сталкивается с землёй (Рис. 3.9, справа). Такое изменение направления движения загрязнённого воздуха уменьшает его вытекание из-под укрытия наружу[3- 14][3- 15].
На Рис. 3.10 показаны полки, установленные на буровой установке при проведении испытаний. Полки сделали из 15-см конвейерной ленты, и закрепили болтами на металлических уголках размером 5 см. Эти уголки были прикреплены болтами к ограждению укрытия по его периметру. Для полной герметизации внутреннего пространства была добавлена дверца (кусок резины), закрывавшая отверстие для доступа к внутреннему пространству извне (дверца не показана). Полки установили примерно посередине (по вертикали) между верхом укрытия и землёй. Лабораторные эксперименты показали, что установка отдельных полок на каждой из сторон укрытия на разной высоте – не эффективна. Поэтому нужно устанавливать полки так, чтобы между ними не было зазоров по углям. Трудозатраты на установку полок: два человека делают эту работу менее чем за час[3- 14].
Такие отклоняющие поток полки не требуют техобслуживания после установки – если они не повредятся при перемещении буровой от одного места работы к другому. Измерения в производственных условиях во время работы буровой установки (бурившей скважины для закладки взрывчатых веществ) показали, что при их использовании концентрация пыли уменьшается на 66–81%[3- 16] – в зависимости от направления ветра и свойств грунта. Но нужно отметить, что при очень низкой концентрации пыли (<0.5 мг/м3), (относительный) эффект от использования полок уменьшается. Это объясняется влиянием большого числа других источников пыли (пылеуловителя, утечки через отверстие в платформе, через которое проходят буровые трубы, из-за пыли, создаваемой при выполнении других работ), которые начинают влиять на концентрацию в большей степени[3- 16].
При использовании таких полок оказалось, что пыль может скапливаться на их верхней поверхности (Рис. 3.11, слева). Из-за падения с них накапливающейся пыли её концентрация может быть значительно выше (Рис. 3.11, справа). Вынос пыли из укрытия при высыпании из него разрушенной породы происходит и при отсутствии полки. Поэтому использование полок не создаёт новую проблему, но может усугубить уже имеющуюся. Для преодоления этого недостатка полки можно устанавливать под углом 45° и их изготавливают из другого материала (Рис. 3.12).
При установки полки под углом 45° нужно увеличить ширину полки с 15 до 20 см (6 to 8 inches) для сохранения эквивалентной ширины по горизонтали 15 см (6 inch). Полки должны быть сделаны из полиэтилена высокой плотности HDPE толщиной 6 мм (1/4 inch). Этот материал имеет скользкую поверхность, что уменьшает прилипание пыли к поверхности полок. Он продаётся в виде пластин размером 1.2×2.4 м (4×8 foot), из которых можно вырезать куски необходимого размера. Описанная модификация устраняет риск накопления пыли на полках. Также можно уменьшить размер секций полок для предотвращения их возможного повреждения при перемещениях буровой установки с места на место; и использовать дополнительные цепи (подвески) для предотвращения искривления. При использовании коротких секций важно, чтобы они перекрывали друга для предотвращения просачивания, снижающего эффективность полок.
Выгрузка уловленной пыли
Выгрузка уловленной пыли (из пылеуловителя) даёт до 40% от всей запылённости (по респирабельной пыли)[3- 6]. Выгрузка уловленной пыли может проводиться двумя способами: периодически через заданные интервалы времени; и при остановках в работе (trickle or batch mode). В первом случае механизм выгрузки может включаться через определённые интервалы времени (например – 1 раз в минуту), что позволит выгружать уловленную пыль на землю. Во втором случае выгрузка происходит в те моменты времени, когда сжатый воздух для продувки скважины не подаётся, например – при вынимании буровой колонны из скважины, или при наращивании буровых труб. Во втором случае запылённость выше, так как интервалы времени, в течение которых накапливается мелкодисперсный материал перед выгрузкой - больше. При сбросе мелкодисперсного материала пыль обычно попадает в воздух. При столкновении этого материала с землёй также наблюдается сильное пылеобразование. Наконец, сама буровая установка и другие машины нередко ездят по кучам выгруженной пыли, поднимая её в воздух. Для предотвращения вторичного попадания пыли в воздух нужно избегать воздействий на кучи выгруженной пыли.
Предотвращение уноса пыли при её выгрузке
Место выгрузки пыли из пылеуловителя обычно находится на 60÷90 см (24÷36 inches) платформы буровой установки. Сброс пыли с такой высоты приводит к попаданию респирабельной пыли в воздух. Для уменьшения вторичного попадания пыли в воздух, и для снижения концентрации респирабельной пыли в месте её выгрузки из пылеуловителя, к месту выгрузки можно присоединить завесу из ткани, используя большой хомут для рукавов. На Рис. 3.13 A, B и C показана установка такого ограждения. Такое ограждение можно установить поверх имеющегося резинового.
Установка такого простого ограждения на практике оказалась очень эффективным методом уменьшения концентрации респирабельной пыли. Измеренная концентрация респирабельной пыли после установки ограждения была в диапазоне 0.16-0.24 мг/м3. На Рис. 3.14 показано уменьшение концентрации респирабельной пыли около места её выгрузки при наличии ограждения и без него. Видно, что установка ограждения снижает концентрацию респирабельной пыли в месте её выгрузки на 63÷88 %[3- 17]. Нужно отметить, что снижение концентрации сильно зависит от направления и скорости ветра. Достоинство этого метода в том, что материал недорогой, и техобслуживание практически не требуется. Если ограждение будет повреждено, его легко можно заменить, прервав работу буровой установки на 1÷15 минут, или вообще без перерыва.
При установке ограждения его длину нужно выбирать так, чтобы её хватало от места выгрузки пыли до земли. Оно должно быть обрезано так, чтобы оно лишь касалось земли при опускании буровой установки. При оборачивании того материала, который используется для создания укрытия, в месте выгрузки пыли, нужно чтобы он размещался с перекрытием (см. Рис. 3.13 C). Перекрытие позволяет ткани (укрытию) расширяться при сбросе мелкодисперсной пыли на землю, что улучшает удержание респирабельной пыли в укрытии. Наличие такого ограждения также предотвращает попадание уловленной пыли на гусеницы буровой установки, что могло бы привести к попаданию респирабельной пыли в воздух при движении установки.
Борьба с просачиванием пыли через отверстие в буровой платформе
Оператор буровой установки и другие люди, находящиеся поблизости, могут подвергаться сильному воздействию пыли, просочившейся через отверстие в буровой платформе, используемое для подачи буровых труб в скважину. Когда отверстие новое, не изношенное, оно обычно предотвращает попадание разрушенной породы на верхнюю поверхность буровой платформы. Но по мере износа между платформой и буровыми трубами образуется зазор, и это позволяет пыли и разрушенной породе проходить через отверстие.
Предотвращение просачивания между буровой колонной и отверстием в буровой платформе
Чтобы свести к минимуму этот источник пыли, многие изготовители бурового оборудования устанавливают резиновые листы (обычно используют куски конвейерного транспортёра) ниже буровой платформы, закрывая место выноса пыли через отверстие в платформе. В листах делают отверстие, чтобы пропустить буровые трубы. Листы изнашиваются и повреждаются, и через некоторое время выбросы пыли через отверстие возобновляются. На Рис. 3.10 показаны эти резиновые листы, размещённые в месте, где буровые трубы проходят через буровую платформу.
Изобретение Air Ring Seal (AIRRS) предназначено для решения этой проблемы. AIRRS – не механическое уплотнение, оно не требует практически никакого техобслуживания. Оно состоит из полого тела торообразной формы, которое охватывает буровые трубы в месте их прохождения через отверстие в платформе, и в котором есть много близко расположенных отверстий (см. Рис. 3.15) с внутренней стороны[3- 4]. При подаче в AIRRS сжатого воздуха он начинает вытекать через отверстия с внутренней струйкам - с большой скоростью. Эти струйки направлены поперёк отверстия для предотвращения перемещения частиц пыли через отверстие.
Устройство AIRRS устанавливается ниже платформы буровой установки в том месте, где буровые трубы проходят через платформу – так, что трубы попадают в отверстие в торообразном корпусе AIRRS. Диаметр устройства должен быть настолько мал, насколько это возможно, но чтобы при этом сохранялся зазор между буровыми трубами и корпусом, чтобы свести к минимуму риск повреждения при поднимании буровых труб. Также очень важно, чтобы отношение расходов воздуха (сжатого и пылеуловителя) было не меньше 2, иначе при использовании устройства AIRRS будет большая утечка пыли из укрытия.
При бурении скважин на поверхности это устройство успешно и значительно снижает концентрацию респирабельной пыли, и также помогает поддерживать в чистоте платформу буровой установки[3- 4]. Установка устройства AIRRS позволяет устранить визуально заметный выброс пыли через отверстие и вынос частиц разрушенной породы. Количество воздуха, подаваемого в устройство, ограничивается производительностью компрессора буровой установки. При давлении воздуха 207 кПа (30 psi) и диаметре отверстий ~1.59 мм (1/16-inch) устройство AIRRS успешно снижает вынос пыли из укрытия[3- 4]. Но количество (подаваемого) воздуха сильно зависит от конструкции буровой установки.
Для уменьшения выноса пыли через отверстие помимо устройства AIRRS также устанавливают втулки (у которых небольшой зазор между буровыми трубами и их корпусом). Это уменьшает размер зазоров и вынос разрушенного материала. Замена втулок по мере необходимости также улучшает работу пневматического кольцевого уплотнения.
Пылеуловители небольших буровых установок
На Рис. 3.16 показаны пылеуловители буровых установок от маленького до среднего размера. Схема иллюстрирует работу таких систем. Эти системы (маленьких буровых установок) отличаются от пылеулавливающих систем больших буровых установок тем, что они улавливают/всасывают все частицы разрушенного материала, направляют их в циклон на стреле буровой установки (который отделяет крупные частицы), и затем направляет остальные частицы в пылеуловитель, который находится сзади буровой установки, где улавливается мелкая пыль.
Для эффективного уменьшения концентрации пыли большое значение имеет техобслуживание пылеуловителей. При его проведении должно решаться два важных вопроса:
- Фильтры должны заменяться до того, как их материал засорится, и
- При плохом обслуживании ограждения и уплотнения отверстия в буровой платформе они станут источниками большого количества пыли (как было показано, утечки через отверстие и в месте крепления ограждения даже более опасны, чем утечки в месте касания укрытия и земли)[3- 18].
В таких буровых установках для уменьшения пылеобразования могут использоваться и мокрые способы. Тогда в состав пылеулавливающей системы входит ёмкость с водой или смесью, которые впрыскиваются в в главный и дополнительный пылеуловители для уменьшения выноса пыли[3- 19]. Для поддержания пылеулавливающей системы в исправном и работоспособном состоянии важно следит за (эффективностью) снижения запылённости.
Снижение запылённости при бурении под землёй
правитьПри бурении подземных скважин обычно используют ударное бурение при небольшом (до 76 мм / 3 дюйма) диаметре скважин. В зависимости от используемой технологии подземной добычи полезных ископаемых получаемые отверстия могут быть направлены в любую сторону. Отверстия для закладки взрывчатых веществ обычно направлены горизонтально или вертикально, и они в целом расположены симметрично. Для бурения может использоваться разное оборудование – от ручного перфоратора с поддержкой (упорами/стойками), до механизированных перфораторов на колёсном шасси Jumbo, где на одной машине есть два-три перфоратора (см. Рис. 3.17). Для снижения запылённости при бурении под землёй чаще всего используют мокрые способы. Сухие пылеуловители стали использовать позднее, и они используются не слишком широко из-за громоздкости фильтра и (относительно) сложного техобслуживания[3- 20].
Мокрое пылеподавление при бурении
правитьWet Drilling
При мокром пылеподавлении вода используется для удаления разрушенной породы из скважины. На Рис. 3.18 показано, как вода закачивается в скважину через полый бур, выходит в центе наконечника бура, и вытекает через канал скважины, унося разрушенную породу. Давление воды, необходимое для её прокачивания, равно давлению воздуха, используемого для работы перфоратора, или меньше давления воздуха, но не более чем на 69 кПа (10 psi)[3- 2].
Самым лучшим способом снижения запылённости (на 86-97% - в зависимости от вида бурения) является мокрое бурение[3- 21][3- 22]. Угол наклона скважины прямо влияет на эффективность снижения запылённости. Наихудшее снижение запылённости обнаружилось при бурении вертикальных отверстий в кровле. При бурении наклонных отверстий (вверх от рабочего) в воздух попадало на 50-60% пыли меньше, чем при бурении вертикальных отверстий в кровле[3- 23]. Причина сильного пылеобразования при бурении вертикальных отверстий – то, что вода находится в контакте со стенками скважины непродолжительно, и то, что шлам быстро падает вниз и стекает по буровой трубе. Для увеличения пылеобразования при бурении вертикальных скважин[3- 24] используют:
- Увеличение подачи воды;
- Установку улавливателя для сбора шлама и его отвода от буровых труб;
- Проектирование таких перфораторов, у которых уменьшенная утечка воздуха спереди вдоль буровых труб; и
- Предотвращение разбрасывания стекающего шлама выходящим из перфоратора воздухом.
Изучалось влияние расхода воды на концентрацию пыли при работе разных перфораторов. У телескопических перфораторов (stoper drills) при увеличении расхода воды до 4.9 л/мин (1.3 gpm) концентрация пыли быстро убывала. А при продолжении увеличения расхода воды свыше 5 л/мин концентрация пыли снижалась, но гораздо медленнее. Это же явление наблюдалось и при работе колонковых перфораторов (drifter drill), но границей был расход воды 3.8 л/мин (1.0 gpm). Поэтому рекомендуется использовать оптимальный расход воды 4.9 л/мин для телескопических перфораторов, и 3.8 л/мин у колонковых перфораторов[3- 24]. Кроме того, мокрое бурение имеет другие преимущества – большая скорость проникания и уменьшение поломок бура (breakage), чем при сухом бурении[3- 21].
Измерения показали, что при прохождении первых 30÷60 см скважины при мокром бурении запылённость наибольшая[3- 25]. Затем концентрация пыли быстро снижается, и становится стабильной. Эти измерения также показали, что большая запылённость не связана с разбуриванием скважины, так как отверстия разбуривали перед началом измерений[3- 25].
Использование тумана и пены
Исследования также показали, что закачивание в скважину тумана из капель воды, и закачивание пены также снижает концентрацию пыли на 91-96%[3- 26][3- 27]. Но небольшое относительное снижение концентрации пыли по сравнению с мокрым бурением не окупает увеличение затрат при использовании этих способов.
Поверхностно-активные вещества (ПАВ)
Также изучалось использование добавки ПАВ к воде – но заметного улучшения не обнаружилось. Результаты показали, что добавка ПАВ при разном расходе воды уменьшает концентрацию пыли[3- 28]. Но снижение концентрации пыли при мокром бурении без всяких добавок настолько велико, что дальнейшее снижение за счёт использования ПАВ незначительно. Заявление о том, что добавка ПАВ повышает скорость бурения, сочли необоснованным из-за непостоянства скорости бурения (отклонения от -24.9% до +57.5%), и влияния на неё условий бурения[3- 28].
Распыление воды извне
Распыление воды извне, показанное на Рис. 3.19, стали использовать позднее. Но при сухом бурении концентрация пыли снижалась лишь до 25% по сравнению с сухим бурением (без использования воды вообще)[3- 21]. Для уменьшения запылённости при сухом бурении было придумано и испытано устройство – кольцо с отверстиями для распыления воды (с внутренней стороны). Это устройство одевается на бур и распыляет на него воду, находясь вне скважины. Снижение концентрации пыли при сухом бурении при использовании этого устройства было нестабильным, от 75 до 88%[3- 22]. Проводилась проверка эффективности установки ограждения вокруг места распыления воды (внешнего) на бур. Ограждение позволило снизить запылённость до 53%[3- 26]. Из-за слишком большой концентрации пыли установка такого ограждения и наружное распыление воды не могут использоваться вместо мокрого бурения – хотя и улучшает результат. Они могут использоваться как дополнение к мокрому бурению для дальнейшего уменьшения запылённости.
Снижение концентрации респирабельной пыли при взрывных работах
правитьВзрывные работы используют при добыче полезных ископаемых для периодического для разрушения породы. Это важный этап добычи полезных ископаемых, эффективность которого может сильно влиять на дробление и на расходы на измельчение руды[3- 29]. Хотя при взрывах очевидно образование большого количества пыли, но взрывные работы проводят достаточно редко, и считается, что они вносят небольшой вклад в (среднее) загрязнение воздуха мелкодисперсной пылью размером менее 10 мкм - PM10[3- 30][3- 31]. Проводились исследования для создания способа оценки того, какое количество пыли образуется при взрывах. Теперь такое приближённое определение можно сделать по формуле:
- е = 0.000225 × А1.5 (СИ)
- (е = 0.00050 × А1.5) (IP)
- где е – общее количество пыли, попавшее в воздух при взрыве, кг/взрыв (фунт/взрыв), и А – площадь взорванного участка (м2) – в случаях, когда глубина воронки не превышает 21 м (70 feet).
А для оценки доли частиц, меньших 10 мкм, используют уравнение:
- PM10 = e × 0.225 (СИ)
- (PM10 = e × 0.5) (IP)
- где PM10 = масса пыли, кг (фунты), частицы которой меньше 10 мкм, а е – общее количество пыли, попавшей в воздух (при одном взрыве).
Нужно отметить, что эти уравнения (U.S. EPA) дают лишь приблизительный результат. Чтобы определить массу пыли, попадающую в воздух при взрыве более точно, нужно учитывать факторы, зависящие от места проведения взрывов, и изученные при проведении реальных взрывов в схожих условиях[3- 32].
Снижение запылённости при проведении взрывных работ
правитьПоскольку считается, что проведение взрывов не вносит значительного вклада в (среднюю) запылённость, то документов с описанием способов снижения запылённости при проведении взрывных работ немного. Известно 5 способов, некоторые из которых способны эффективно снижать запылённость только при подземных взрывах[3- 33]:
- Увлажнение всей области, где будет проводиться взрыв,
- Установка ёмкостей с водой в скважину для закладки взрывчатки – после её закладки,
- Распыление водяного тумана перед, во время, и после взрыва,
- Использование воздухоочистителей для очистки воздуха от загрязнений, и
- Рассеивание и удаление воздушных загрязнений с помощью хорошо спроектированной вентиляционной системы.
Увлажнение области взрыва Wetting Down Blasting Area
Распространённым методом уменьшения запылённости при проведении взрывных работ является увлажнение всей взрываемой области перед взрывом. Это уменьшает попадание пыли в воздух из-за её прилипания к мокрым поверхностям[3- 33]. Этот способ оказался эффективным при проведении взрывных работ под землёй. Он также может быть эффективным при проведении взрывов на поверхности – в зависимости от (длительности) интервала времени между увлажнением и взрывом, с учётом скорости высыхания воды в имеющихся атмосферных условиях (что делает увлажнение неэффективным). Однако увлажнение места взрыва непосредственно перед ним, во время соединения проводов взрывателей, может оказаться недопустимым по соображениям безопасности.
Установка ёмкостей с водой Water Cartridges
При закладке взрывчатки в скважину после неё в отверстие может вставляться ёмкость с водой. Практика показала, что это эффективный способ при проведении подземных взрывов при добыче угля. Ёмкости закладываются после установки заряда взрывчатки, или перед ним – без какого-то негативного влияния на разрушение породы. На Рис. 3.20 показана разновидность такой ёмкости с водой. Этой ёмкостью является пластиковый мешок, который вставляют в отверстие после закладки взрывчатки, и который затем заполняют водой так, что он плотно прилегает к стенкам отверстия. Сообщали, что при подземной добыче угля использование таких ёмкостей уменьшает концентрацию пыли на 40-60%.
Генераторы тумана Fogger Sprays
На Рис. 3.21 показано использование генератора водяного тумана для снижения запылённости в забое при проведении взрывных работ. Использование такого способа началось позднее, чем других. для работы генератора тумана используют сжатый воздух и воду, пропуская их через сопло. Форсунка устанавливается на расстоянии около 30 м (100 футов) от забоя, и подача тумана начинается перед взрывом, а прекращается через 20÷30 минут после взрыва[3- 34]. Сейчас известно, что создание тумана позволяет эффективно снижать концентрацию пыли под землёй, но может ли это снизить концентрацию пыли при наземных взрывах – неизвестно.
Использование воздухоочистителей Air Filtration Systems
Другой способ уменьшения запылённости при проведении подземных взрывов, который стал использоваться позднее других – фильтрация загрязненного воздуха, удаляемого вентиляцией (Рис. 3.22). Одна из таких вентиляционных установок, используемых в Южной Африке, включает в себя противоаэрозольный фильтр (для улавливания пыли) и слой сорбента из вермикулита, обработанного карбонатом натрия и калия (для улавливания соединений азота)[3- 33]. На Рис. 3.23 показан другой метод. Фильтры располагаются вне вентиляционной системы, и форсунка распыляет воду на них (направление распыления совпадает с направлением движения воздуха). Эти фильтры используются только во время взрыва, и диаметр воздуховода, в котором они располагаются, примерно в 2 раза больше диаметра трубы вентиляционной системы[3- 34]. Сравнительно недавно для тех же целей стали использовать сухие фильтры.
Удаление пыли и газов подземной вентиляционной системой
Наиболее распространённый способ уменьшения концентрации пыли и газов при проведении взрывов – их рассеивание и удаление вентиляционной системой (под землёй), или их рассеивание в атмосфере (при наземных взрывах). При проведении взрывов под землёй их обычно планируют так, чтобы они проводились в то время, когда нет людей – чтобы для рассеивания и удаления вентиляцией пыли и газов было достаточно времени[3- 33]. Если такое расписание работ невозможно, то люди должны покинуть места проведения взрывов, и не должны заходить туда до того, как пыль и газы будут удалены или рассеются.
Необходимый для этого интервал времени зависит от конкретных условий, и зависит от местной вентиляционной системы. Поэтому важно поддерживать местную вентиляционную систему в хорошем и рабочем состоянии для улучшения удаления пыли и газов и для сокращения интервала времени, который необходим для этого.
При проведении работ на поверхности, непосредственно перед проведением взрыва люди покидают опасное место. При планировании взрывных работ учитывают метеоусловия (для уменьшения влияния на образование пыли используется низкая скорость ветра и слабая инверсия). Обычно сразу после взрыва происходит рассеивание пыли и газов – в зависимости от скорости и направления ветра, и до рассеивания пыли проведение работ в месте взрыва не разрешается. Кроме того, было отмечено (но пока точно не проверено), что использование детонаторов с задержкой взрыва на миллисекунды (при подрыве нескольких зарядов) может уменьшить пылеобразование[3- 35].
.
ССЫЛКИ
- ↑ а б в USBM [1987]. Optimizing dust control on surface coal mine drills. By Page SJ. U.S. Department of the Interior, Bureau of Mines Technology News 286.
- ↑ а б Hustrulid WA, ed. [1982]. Underground mining methods handbook. New York: Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.
- ↑ USBM [1995]. The reduction of airborne dust generated by roof bolt drill bits through the use of water. By Sundae LS, Summers DA, Wright D, Cantrell BK. U.S. Department of the Interior, Bureau of Mines Report of Investigations 9594.
- ↑ а б в г д Page SJ [1991]. Respirable dust control on overburden drills at surface mines. Coal mining technology, economics, and policy. Session papers from the American Mining Congress Coal Convention, Pittsburgh, Pennsylvania, June 2–5, pp. 523–539.
- ↑ USBM [1988]. Impact of drill stem water separation on dust control for surface coal mines. By Page SJ. U.S. Department of the Interior, Bureau of Mines Technology News 308.
- ↑ а б USBM [1985]. Quartz dust sources during overburden drilling at surface coal mines. By Maksimovic SD, Page SJ. U.S. Department of the Interior, Bureau of Mines Informational Circular 9056.
- ↑ USBM [1986]. Investigation of quartz dust sources and control mechanisms on surface mine operations, Vol. I—Results, analysis, and conclusions. By Zimmer RA, Lueck SR. U.S. Department of the Interior, Bureau of Mines Final Contract Report, NTIS: PB 86–215852, 72 pp.
- ↑ Zimmer RA, Lueck SR, Page SJ [1987]. Optimization of overburden drill dust control systems on surface coal mines. Inter J of Surface Min 1(2):155–157.
- ↑ Page SJ, Organiscak JA [2004]. Semi-empirical model for predicting surface coal mine drill respirable dust emissions. Inter J of Surface Min, Rec, and Env 18(1):42–59.
- ↑ NIOSH [2006]. Technology news 512: Improve drill dust collector capture through better shroud and inlet configurations. Pittsburgh, PA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Publication No. 2006–108.
- ↑ Organiscak JA, Page SJ [2005]. Development of a dust collector inlet hood for enhanced surface mine drill dust capture. Inter J of Surface Min, Rec, and Env. 19(1):12–28.
- ↑ а б в Page SJ, Listak JM, Reed WR [2008a]. Drill dust capture-improve dust capture on your surface drill. Coal Age.
- ↑ а б в Page SJ, Reed WR, Listak JM [2008b]. An expanded model for predicting surface coal mine drill respirable dust emissions. Inter J of Surface Min, Rec, and Env 22(3):210–221.
- ↑ а б в Potts JD, Reed WR [2008]. Horizontal air blocking shelf reduces dust leakage from surface drill shroud. Transactions of the Society of Mining, Metallurgy, and Exploration. Littleton, Colorado: Society for Mining, Metallurgy, and Exploration, Inc. 324:55–60.
- ↑ а б Reed WR, Potts JD [2009]. Improved drill shroud capture of respirable dust utilizing air nozzles underneath the drill deck. Transactions of the Society of Mining, Metallurgy, and Exploration. Littleton, Colorado: Society for Mining, Metallurgy, and Exploration. 326:1–9. Статья.
- ↑ а б Potts JD, Reed WR [2010]. Field evaluation of air-blocking shelf for dust control on blasthole drills. Submitted to Mining Engineering, 2010.
- ↑ Reed WR, Organiscak JA, Page SJ [2004]. New approach controls dust at the collector dump point. Coal Age, June, pp. 20–22.
- ↑ USBM [1956]. Dust control in mining, tunneling, and quarrying in the United States. By Owings CW. U.S. Department of the Interior, Bureau of Mines Information Circular 7760.
- ↑ Sandvik [2005]. Tamrock ranger drills feature rock pilot, dust minimizor systems for enhanced and cleaner operation. Atlanta, Georgia: Sandvik Mining and Construction. - документ не найден.
- ↑ USBM [1951]. Roof bolting and dust control. By Westfield J, Anderson FG, Owings CW, Harmon JP, Johnson L. U.S. Department of the Interior, Bureau of Mines Information Circular 7615.
- ↑ а б в USBM [1921]. Dust reduction by wet stopers. By Harrington D. U.S. Department of the Interior, Bureau of Mines Report of Investigations 2291.
- ↑ а б USBM [1939]. Dust produced by drilling when water is sprayed on the outside of the drill steel. By Johnson JA, Agnew WG. U.S. Department of the Interior, Bureau of Mines Report of Investigations 3478.
- ↑ USBM [1938a]. Effect of angle of drilling on dust dissemination. By Brown CE, Schrenk HH. U.S. Department of the Interior, Bureau of Mines Report of Investigations 3381.
- ↑ а б USBM [1938c]. Relation of dust dissemination to water flow through rock drills. By Brown CE, Schrenk HH. U.S. Department of the Interior, Bureau of Mines Report of Investigations 3393.
- ↑ а б USBM [1938b]. Relation of dust concentration to depth of hole during wet drilling. By Littlefield JB, Schrenk HH. U.S. Department of the Interior, Bureau of Mines Report of Investigations 3369.
- ↑ а б USBM [1982a]. An evaluation of three wet dust control techniques for face drills. Page SJ. U.S. Department of the Interior, Bureau of Mines Report of Investigations 8596.
- ↑ USBM [1982b]. Evaluation of the use of foam for dust control on face drills and crushers. By Page SJ. U.S. Department of the Interior, Bureau of Mines Report of Investigations 8595.
- ↑ а б USBM [1943]. Use of wetting agents in reducing dust produced by wet drilling in basalt. By Johnson JA. U.S. Department of the Interior, Bureau of Mines Report of Investigations 3678.
- ↑ Hustrulid WA [1999]. Blasting principles for open pit mining, Vol. 1—General design concepts. Rotterdam, Netherlands: A.A. Balkema.
- ↑ EPA [1991]. Review of Surface Coal Mining Emissions Factors. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, July.
- ↑ Richards J, Brozell T [2001]. Compilation of National Stone, Sand and Gravel Association Sponsored Emission Factor and Air Quality Studies 1991–2001. Arlington, Virginia: National Stone, Sand and Gravel Association www.nssga.org .
- ↑ EPA [1998]. Review of Emission Factors for AP—42 Section 11.9 Western Surface Coal Mining. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, September.
- ↑ а б в г Cummins AB, Given IA, eds. [1973]. SME Mining engineering handbook, Vol. 1. New York: Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.
- ↑ а б ILO [1965]. Guide to the prevention and suppression of dust in mining, tunnelling, and quarrying. International Labour Office, Geneva, Switzerland; Atar, South Africa.
- ↑ Miller S, Emerick JC, Vogely WA [1985]. The secondary effects of mineral development. Economics of the mineral industries, chapter 5.15B. Littleton, Colorado: Society of Mining, Metallurgy, and Exploration.
ГЛАВА 4. Дробление, размол и просеивание
правитьCrushing, milling and screening
По самой своей природе процессы дробления, размола и просева минеральных полезных ископаемых могут стать источниками значительного количества пыли. Для снижении концентрации пыли при выполнении этих технологических процессов требуется правильно определить источники пыли, найти подходящие методы снижения концентрации пыли, применить их и обеспечить необходимое и своевременное техобслуживание используемого оборудования.
Для уменьшения воздействия пыли на рабочих можно использовать технические средства для снижения пылеобразования или изоляции источников пыли, описанные ниже; или же изолировать рабочего от источника пыли, как описано в главе 9 “Кабины операторов, пульты управления и кабины мобильного оборудования”. Как дополнение к применению технических средств, широко используют организационные мероприятия – инструкции/ выполнения работы, организация выполнения работы, обучение рабочих. В те периоды времени, когда происходит установка, ремонт, техобслуживание (и другие не-ежесменные работы) достаточно эффективных технических средств защиты, и когда полученное с их помощью снижение запылённости оказывается недостаточным, может потребоваться использование средств индивидуальной защиты.
Как и у всякого оборудования, установка выбранных технических средств снижения запылённости (когда выбрано подходящее оборудование), не гарантирует, что они сохранят работоспособность и эффективность при дальнейшей эксплуатации. Параметры работы газоочистного оборудования, которое часто является дорогостоящим, нужно периодически проверять; у самого оборудования проводить техобслуживание, и – при необходимости – модернизацию. Например, эффективность пылеулавливающей системы, установленной для защиты рабочих от пыли, можно проверить только если сделать замеры концентрации пыли в зоне дыхания рабочего с помощью индивидуальных пробоотборников и сравнить концентрации химических веществ с ПДКрз.
Разное оборудование для переработки минерального сырья загрязняет воздух пылью в разной степени. Если принять интенсивность пылеобразования первичной дробилки как основу для сравнения, то в таблице 4.1 можно найти информацию об интенсивности пылеобразования при проведении других широко используемых видов обработки минеральных ископаемых. Приведённое ранжирование основано на оценках EPA для дробления камней/щебёнки, и представлено здесь лишь для иллюстрации интенсивности пылеобразования у разных процессов[4- 1]. Видно, что чем мельче конечный продукт, тем больше интенсивность пылеобразования, что и следовало ожидать.
Оборудование | Относительная интенсивность пылеобразования |
---|---|
Первичная дробилка | 1 |
Вторичная дробилка | Нет данных, информация для третичной дробилки является верхней границей возможных значений. |
Третичная дробилка (сухая) | 51 |
Третичная дробилка (мокрая) | 2 |
Просеивание (сухое) | 214 |
Просеивание (мокрое) | 12 |
Предотвращение попадания пыли в воздух и очистка воздуха от пыли
правитьМокрые способы
правитьМокрые способы снижения концентрации пыли могут быть очень эффективными и менее дорогими по капитальным и эксплуатационным расходам, но они могут оказаться неподходящими из-за свойств минерального сырья, из-за проблем при дальнейшей переработке, или из-за невыполнения технических условий покупателя. Кроме того, при проведении переработки в местах с холодным климатом нужно предусмотреть защиту от замерзания, и нарастание льда создаёт дополнительную опасность для рабочих.
Как более подробно обсуждалось в главе 2 “Обеспыливание с помощью воды”, все методы, использующие воду для снижения концентрации пыли, можно разделить на две группы – предотвращение (попадания пыли в воздух), и улавливание (попавшей в воздух пыли). При предотвращении вода используется для того, чтобы помешать пыли попасть в воздух. При улавливании капли воды смачивают частицы пыли, уже попавшие в воздух, увеличивая их массу и заставляя их оседать под действием силы тяжести гораздо быстрее.
В целом, предотвращение гораздо эффективнее, чем улавливание[4- 2][4- 3]. Но при дальнейшем измельчении намоченного материала из-за увеличения площади его поверхности нужно его дополнительно увлажнять. А это может создать дополнительные проблемы, так как дополнительное увлажнение для предотвращения попадания пыли в воздух может сделать материал слишком сырым, так что это помешает нормальной работе и техобслуживанию оборудования, переработке материала или получению конечного продукта с требуемыми свойствами. Поэтому часто трудно избежать некоторого компромисса между снижением концентрации пыли и эффективностью технологического процесса.
Улавливание респирабельной пыли с помощью распыления воды форсунками на облако пыли обычно малоэффективно. При использовании форсунок с гидравлическим распылением сложно получить достаточно маленькие капельки воды для того, чтобы они могли столкнуться и уловить мелкие респирабельные пылинки. Мелкие капельки можно получить с помощью пневматических форсунок, но для этого нужен источник сжатого воздуха, а очень маленькие сопла чаще засоряются, что увеличивает затраты на техобслуживание. Кроме того, использование пневматических форсунок из-за большого объёма выпускаемой смеси воздуха и воды обычно требует использования укрытий для предотвращения переноса пыли в окружающее пространство. Всё это увеличивает эксплуатационные расходы.
Сухие способы снижения запылённости
правитьДля уменьшения концентрации пыли при транспортировке (см. главу 5 “Перевозка и перемещение материала”) и переработке минеральных полезных ископаемых можно использовать укрытия с разрежением, местные вентиляционные отсосы и очистку запылённого воздуха. Этот подход, который можно назвать сухим способом снижения запылённости, может потребовать больших капитальных и эксплуатационных расходов, но может оказаться очень эффективным. Кроме того, использование сухого способа может потребоваться тогда, когда увлажнение отрицательно сказывается на качестве продукта (например - тронов или глины).
При использовании сухих способов нужно создать условия для предотвращения распространения запылённого воздуха от источника пыли на рабочие места сотрудников. Для этого используют вытяжную вентиляцию, которая создаёт разрежение в ограниченном укрытием пространстве (разрежение - по отношению к окружающему пространству, см. главу 1 “Принципы пылеулавливания”). На расход отсасываемого воздуха влияет:
- Степень закрытости ограниченного пространства (при увеличении площади проёмов расход воздуха возрастает);
- Движение воздуха, вызванное перемещением и обработкой материала (включая тот воздух, который увлекается перемещающимся материалом и движущимся оборудованием), и количество воздуха, вытесняемое материалом, входящим в или выходящим из укрытия,
- Влиянием внешнего движения воздуха и его направлением движения, которое может мешать созданию разрежения в укрытии.
Дробление
правитьПри измельчении материала используется как минимум одна измельчающая установка, а обычно их используют несколько, и они часто бывают разной конструкции. При выборе типа измельчителя учитывают требуемые размеры кусков исходного и получаемого продукта, а также производительность. При выборе также учитывается твёрдость, состав, и абразивные свойства измельчаемого материала. Для первичного этапа измельчения чаще всего используют щековую дробилку (jaw crusher), Рис. 4.1, которая измельчает материал, сжимая его между подвижной и неподвижной плитами. Коническая (Рис. 4.2 слева) или вращательная конусная gyratory (Рис. 4.2 справа) дробилки могут использоваться для первичного или вторичного измельчения. Они разрушают материал за счёт сжатия.
Молотковые дробилки hammermills (Рис. 4.3 слева), ударные дробилки impact breakers (Рис. 4.3 в центре) и валковая дробилка roll crushers (Рис. 4.3 справа) разрушают материал за счёт удара. Отличие между разрушением за счёт сжатия и за счёт удара в том, с какой скоростью разрушающая сила передаётся от частей устройства к разрушаемым кускам материала. При сжатии передача энергии происходит медленнее, чем при ударе, и в сжимающих измельчителях пылеобразование несколько меньше, чем ударных.
Для снижения концентрации пыли при измельчении материала можно использовать мокрые способы, сделать укрытие для изоляции источника пыли от окружающего пространства – с и без отсасывания запылённого воздуха, или использовать сочетание мокрых и сухих методов. Обычно (стараются) закрыть верхнюю часть измельчителя (место загрузки материала) в максимальной степени, насколько удаётся[4- 4]. Укрытия должны быть сделаны из стойкого материала, с учётом производственных условий на месте установки и климатических условий.
На Рис. 4.4 показано применение мокрого способа уменьшения запылённости в месте загрузки материала ковшовым погрузчиком. Передняя – открытая - часть укрытия может быть уменьшена с помощью установки подвешиваемой занавеси (вверху) и высокого бордюра или бермы (уступа) внизу. Для экономии нужно использовать автоматику, включающую распыление воды только тогда, когда происходит выгрузка материала.
Как описывалось в главе 2 "Обеспыливание с помощью воды", при использовании воды для увлажнения материала для предотвращения попадания пыли в воздух обычно применяют форсунки со сплошной струёй (с факелом - полным конусом; или с факелом - полым конусом). А при распылении воды для улавливания пыли, уже попавшей в воздух, используют форсунки с факелом – полым конусом. Чтобы обеспечить хороший охват (смачиваемого материала / запылённого воздуха) струи воды должны немного перекрываться.
На Рис. 4.5 показано использование вытяжной вентиляции для снижения концентрации пыли в месте загрузки материала.
Укрытие места образования пыли должно быть как можно более полным, то есть площадь открытых отверстий должна быть сведена к минимуму. Для начальной (приблизительной) оценки расхода отсасываемого воздуха для укрытия, схожего с показанным на Рис. 4.5, можно использовать уравнение 4.1. это уравнение учитывает то, что выгружаемый материал вытесняет воздух:
- Qe = 9 × Т / G (м3/с) = 32368 × Т / G (м3/час) (Уравнение 4.1) (СИ)
- [Qe = 33.3 × (600*Т/G)] (Уравнение 4.1) (IP)
(коэффициенты 9 и 32368 используется вместо коэффициентов 33.3 и 600 для исходных данных в метрах, кг/м3 и кг/сек; а коэффициент 33.3 и 600 – для исходных данных в футах, фунтах/фут3 и тоннах/мин)
- где Qe = расход отсасываемого воздуха, м3/с, м3/час (cubic feet per minute);
- T = масса выгружаемого материала, кг/сек (тонн в минуту); и
- G = насыпная плотность материала, кг/м3 (pounds per cubic foot).
Если выгрузка материала происходит с перерывами, то нужно подумать об установке автоматики, включающей вытяжку и/или распыление воды только в то время, когда происходит выгрузка.
При использовании вытяжной вентиляции для уменьшения концентрации пыли нужно предусмотреть устройство проёмов для доступа и для техобслуживания, и эти проёмы должны плотно, герметично закрываться. Проёмы, расположенные в подходящих местах, и подходящего размера, позволят рабочим выполнять необходимые действия без необходимости в переделке укрытия. Это снизит риск утечки пыли из укрытия через отверстия, (придётся сделать по необходимости – при отсутствии подходящих люков) в не предусмотренных изначально местах, и не имеющие плотно закрывающихся дверей.
Для предотвращения уноса пыли через открытые отверстия рекомендуется поддерживать скорость воздуха не ниже 1 м/с (200 feet per minute) во всех отверстиях[4- 4]. В тех случаях, когда в укрытие входит или выходит ленточный транспортёр, рекомендуется добавлять его скорость движения к скорости 1 м/с, чтобы учесть движение воздуха, вызванное перемещением ремня конвейера, и перемещение материала, который вытесняет воздух[4- 5].
Например, в укрытии с начальной скоростью улавливания (скорость воздуха в проёмах) Vinit 1 м/с (200 feet per minute fpm) при прохождении транспортёра со скоростью ленты Vbelt 1.25 м/с (250 fpm), получаем рекомендуемую скорость воздуха в проёмах (Vcap):
- Скорость улавливания (Vcap) = Vinit 1 м/с + Vbelt 1.25 м/с = 2.25 м/с (200 fpm + 250 fpm = 450 fpm).
А расход воздуха, отсасываемого из укрытия, вычисляется умножением площади всех проёмов в укрытии на скорость улавливания:
- Qe (м3/сек) = Vcap (м/с) x площадь (м2) (СИ)
- Qe (cfm) = Vcap (fpm) x open area (sq ft) (IP)
И снова, эти начальные оценки скорости воздуха и расхода воздуха требуют проверки – они должны (1) обеспечить требуемое снижение концентрации пыли, и (2) не требовать чрезмерного расхода энергии. Более подробно работа вытяжной вентиляции рассмотрена в главе 1 “Принципы пылеулавливания”.
Если это возможно, нужно делать укрытия большого размера так, чтобы крупнодисперсная пыль могла оседать в них (внутри). Осаждение крупных частиц пыли таким способом снижает нагрузку на системы транспортировки и очистки воздуха.
При падении материала в местах его выгрузки возникает движение воздуха – из-за вовлечения воздуха в движение материала, и из-за вытеснения воздуха выгружаемым материалом[4- 6][4- 7]. При среднем размере кусков материала больше 3 мм (1/8 дюйма, или 0.01 фута), для оценки этой скорости воздуха можно использовать уравнение 4.2:
- Qe = 0.1157 × Au × (R × S2 / D)1/3 (м3/с) = 416.5 × Au × (R × S2 / D)1/3 (м3/час) (Уравнение 4.2) (СИ)
- Qe = 10 × Au [R × S2/D]1/3 (Уравнение 4.2) (IP)
(коэффициенты 0.1157 и 416.5 используется вместо коэффициента 10 для исходных данных в метрах и кг/сек; а коэффициент 10 – для исходных данных в футах и тоннах/час, см. Уравнение 1.2 – они одинаковы)
- где Qе = расход отсасываемого воздуха, м3/с, м3/час (cubic feet per minute);
- Au = Площадь открытых проёмов укрытия, м2 (square feet);
- R = Подача материала, тонн в час;
- S = Высота падения материала, м (feet); и
- D = Средний размер частиц материала, м (feet).
На рисунках 4.2÷4.6 показано определение расхода отсасываемого воздуха с помощью уравнения 4.2. В каждом из случаев отмечена высота падения материала (переменная S в уравнении 4.2). Площадь открытого проёма вверху (Au) у места перегрузки равна площади поперечного сечения жёлоба/лотка, и не закрытого пространства между жёлобом и окружающими элементами конструкции укрытия. Если лоток не используется, то для определения площади проёма можно использовать оценку площади открытого пространства в месте, где есть проём (например – для размещение ленточного транспортёра).
На Рис. 4.8 и 4.9 показано, как происходит перегрузка материала из места выгрузки на конвейер. У щековой дробилки, у которой площадь поперечного сечения проёма не постоянна, величина площади открытого проёма вверху (обеспыливаемой системы) Au равна площади отверстия в нижней части дробилки (Рис. 4.8).
Для измельчителей с постоянным поперечным сечением, например – для конических дробилок, площадью проёма вверху (обеспыливаемой системы) является площадь загрузочного отверстия (самой) дробилки (Рис. 4.9).
О снижении запылённости в местах перегрузки материала более подробно написано в главе 5 “Перевозка и перемещение материала”.
При использовании мокрого обеспыливания при измельчении материала, показанного на Рис. 4.10 и 4.11, материал увлажняется перед измельчением; после измельчения, или в обоих случаях. Увлажнение чаще всего используется в местах загрузки материала в дробилку и при выгрузке из неё. При измельчении размер кусков уменьшается, что приводит к соответствующему увеличению площади поверхности, которая не увлажнена. Поэтому если материал увлажнялся перед измельчением, то скорее всего, его придётся увлажнять снова после измельчения, чтобы смочить вновь образовавшуюся сухую поверхность.
При использовании мокрых способов обеспыливания нужно помнить, что форсунки с полным конусом создают капли большего размера, чем форсунки с полым конусом. Для улавливания пыли, уже попавшей в воздух, нужно использовать форсунки с полым конусом, и распыление воды должно охватывать всё пространство, в котором находится пыль. А при использовании увлажнения для предотвращения попадания пыли в воздух (например – в бункере для материала), нужно использовать форсунки с полным конусом – так, чтобы они охватывали всю площадь увлажняемого материала. При увлажнении подвижного материала, например – на ленте конвейера, следует использовать форсунки с веерообразным факелом (чтобы наибольший размер поперечного сечения факела был перпендикулярен направлению движения материала), и перекрытие должно составлять около 30% от ширины факела. Мокрые методы обеспыливания более подробно описаны в главе 2 “Обеспыливание с помощью воды”.
Механическое перемещение частей дробилок может вызывать движение воздуха. Работу щековой дробилки можно сравнить с движением мехов, а конусная дробилка действует как вентилятор, хотя части дробилок обоих типов движутся на маленькой скорости. Части молотковой дробилки движутся с большой скоростью, и их можно сравнить с радиальными вентиляторами. Описан метод, позволяющий вычислить максимальный расход воздуха, создаваемый такими дробилками[4- 8]. Для определения максимального объёма воздуха (м3 / cubic feet), перемещаемого за один оборот (Agen rev), можно рассматривать подвижную часть молотковой дробилки как вентилятор, и использовать уравнение 4.3:
- Agen rev = π / ( 4 × D2 × W) (Уравнение 4.3) (СИ, IP)
- где D = диаметр молотковой дробилки (наибольший размер), м (feet); и
- W = ширина молотков, м (feet).
Затем можно получить минутный расход воздуха (м3/мин / cfm), умножив полученную величину (Agen rev) на частоту вращения (об/мин). Для более точного определения расхода воздуха следует измерять скорость воздуха в проёмах укрытия при работающем и при не работающем оборудовании. Если скорость движения воздуха извне внутрь укрытия во время работы оборудовании окажется недостаточной, то нужно увеличить расход воздуха, отсасываемого из укрытия, или разместить в нём экраны / перегородки.
Рекомендации по снижению запылённости при дроблении
правитьДля уменьшения воздействия пыли на операторов при дроблении материала можно рекомендовать:
- Поддерживайте в исправном состоянии запирающие приспособления, и используйте их. Они помогают (снизить запылённость) только при их применении.
- Если это допустимо и возможно, периодически мойте территорию. Периодическое промывание полов предотвращает накопление материала, который в противном случае может накопиться в таком количестве, что потребуется его убирать сухим способом, что приведёт к попаданию пыли в воздух.
- Поддерживайте в исправном состоянии системы фильтрации приточного и рециркуляционного воздуха в кабинах операторов оборудования, кабинах ковшовых погрузчиков и другой используемой подвижной техники. Обеспечьте использование лишь тех фильтров, которые должны применяться, и проводите техобслуживание в соответствии с указаниями изготовителя.
- При выполнении работы (внутри) пылеуловителей, мельниц, воздушных сепараторов, вибросит и дробилок используйте сертифицированные респираторы с тем уровнем защиты, который соответствует условиям работы.
- Если возможно, автоматизируйте процесс дробления, используя датчики и/или видеокамеры. Это позволит оператору управлять работой оборудования издали, и снизит риск вдыхания пыли.
- Если за работой дробильного оборудования нужно наблюдать непрерывно, используйте закрытые кабины для операторов с подачей в них отфильтрованного воздуха под избыточным давлением. См. главу 9 “Кабины операторов, пульты управления и кабины мобильного оборудования”.