Реализации алгоритмов/Алгоритм Кируса — Бека

Алгоритм Кируса — Бека (англ. Cyrus — Beck) — алгоритм отсечения отрезков произвольным выпуклым многоугольником.

Для двумерной модели

public struct Segment
{
    public readonly PointF A, B;

    public Segment(PointF a, PointF b)
    {
        A = a;
        B = b;
    }

    public bool OnLeft(PointF p)
    {
        var ab = B.Sub(A);
        var ap = p.Sub(A);
        return ab.Cross(ap) >= 0;
    }

    public PointF Normal
    {
        get
        {
            return new PointF(B.Y - A.Y, A.X - B.X);
        }
    }

    public PointF Direction
    {
        get
        {
            return new PointF(B.X - A.X, B.Y - A.Y);
        }
    }

    public float IntersectionParameter(Segment that)
    {
        var segment = this;
        var edge = that;

        var segmentToEdge = edge.A.Sub(segment.A);
        var segmentDir = segment.Direction;
        var edgeDir = edge.Direction;

        var t = edgeDir.Cross(segmentToEdge) / edgeDir.Cross(segmentDir);

        if (float.IsNaN(t))
        {
            t = 0;
        }

        return t;
    }

    public Segment Morph(float tA, float tB)
    {
        var d = Direction;
        return new Segment(A.Add(d.Mul(tA)), A.Add(d.Mul(tB)));
    }
}

public class Polygon : List<PointF>
{
    public Polygon()
        : base()
    {}

    public Polygon(int capacity)
        : base(capacity)
    {}

    public Polygon(IEnumerable<PointF> collection)
        : base(collection)
    {}

    public bool IsConvex
    {
        get
        {
            if (Count >= 3)
            {
                for (int a = Count - 2, b = Count - 1, c = 0; c < Count; a = b, b = c, ++c)
                {
                    if (!new Segment(this[a], this[b]).OnLeft(this[c]))
                    {
                        return false;
                    }
                }
            }
            return true;
        }
    }

    public IEnumerable<Segment> Edges
    {
        get
        {
            if (Count >= 2)
            {
                for (int a = Count - 1, b = 0; b < Count; a = b, ++b)
                {
                    yield return new Segment(this[a], this[b]);
                }
            }
        }
    }

    private bool CyrusBeckClip(ref Segment subject)
    {
        var subjDir = subject.Direction;
        var tA = 0.0f;
        var tB = 1.0f;
        foreach (var edge in Edges)
        {
            switch (Math.Sign(edge.Normal.Dot(subjDir)))
            {
                case -1:
                {
                    var t = subject.IntersectionParameter(edge);
                    if (t > tA)
                    {
                        tA = t;
                    }
                    break;
                }
                case +1:
                {
                    var t = subject.IntersectionParameter(edge);
                    if (t < tB)
                    {
                        tB = t;
                    }
                    break;
                }
                case 0:
                {
                    if (!edge.OnLeft(subject.A))
                    {
                        return false;
                    }
                    break;
                }
            }
        }
        if (tA > tB)
        {
            return false;
        }
        subject = subject.Morph(tA, tB);
        return true;
    }

    public List<Segment> CyrusBeckClip(List<Segment> subjects)
    {
        if (!IsConvex)
        {
            Reverse();
            if (!IsConvex)
            {
                throw new InvalidOperationException("Clip polygon must be convex.");
            }
        }

        var clippedSubjects = new List<Segment>();
        foreach (var subject in subjects)
        {
            var clippedSubject = subject;
            if (CyrusBeckClip(ref clippedSubject))
            {
                clippedSubjects.Add(clippedSubject);
            }
        }
        return clippedSubjects;
    }
}

public static class PointExtensions
{
    public static PointF Add(this PointF a, PointF b)
    {
        return new PointF(a.X + b.X, a.Y + b.Y);
    }

    public static PointF Sub(this PointF a, PointF b)
    {
        return new PointF(a.X - b.X, a.Y - b.Y);
    }

    public static PointF Mul(this PointF a, float b)
    {
        return new PointF(a.X * b, a.Y * b);
    }

    public static float Dot(this PointF a, PointF b)
    {
        return a.X * b.X + a.Y * b.Y;
    }

    public static float Cross(this PointF a, PointF b)
    {
        return a.X * b.Y - a.Y * b.X;
    }
}