Построение эллипса
ПРИБЛИЖЕННОЕ ПОСТРОЕНИЕ ЭЛЛИПСА (точное невозможно при помощи циркуля и линейки)
Пусть даны две взаимноперпендикулярные прямые (оси будущего эллипса) и два отрезка длиной a (большая полуось) и b (малая полуось). Точку пересечения прямых обозначим как O, это центр эллипса.
С помощью циркуля
править- Раствором циркуля, равным a, с центром в точке O отметим на одной из прямых точки P1 и Р2, а на второй прямой раствором, равным b — точки Q1 и Q2. Полученные точки являются вершинами эллипса, а отрезки P1Р2 и Q1Q2 — его большая и малая оси, соответственно.
- Раствором циркуля, равным a, с центром в точке Q1 (или Q2) отметим на отрезке P1Р2 точки F1 и F2. Полученные точки являются фокусами эллипса.
- На отрезке P1Р2 выберем произвольную точку T. Затем с помощью циркуля начертим две окружности: первую — радиуса, равным длине отрезка TP1, с центром в точке F1 и вторую радуса, равным длине отрезка TP2, с центром в точке F2. Точки пересечения этих окружностей принадлежат искомому эллипсу, так как сумма расстояний из обоих фокусов равна длине большой оси 2a.
- Повторяя необходимое число раз шаги предыдущего пункта, получим искомый эллипс.
С помощью циркуля и линейки
править- Раствором циркуля, равным a, с центром в точке O отметим на одной из прямой точки P1 и Р2, а на второй прямой раствором, равным b — точки Q1 и Q2. Полученные точки являются вершинами эллипса, а отрезки P1Р2 и Q1Q2 — его большая и малая оси, соответственно.
- С помощью линейки проводим через точку O произвольную наклонную линию. Затем раствором циркуля, равным а, с центром в точке O отмечаем на ней точку S, а раствором, равным b — точку R.
- Затем из точки S опускаем перпендикуляр на прямую P1Р2. Для этого произвольным раствором циркуля (но бо́льшим, чем расстояние от точки до прямой), с центром в точке S отмечаем на отрезке P1Р2 две точки, переносим в них циркуль и отмечаем тем же радиусом точку персечения окружностей S'. Затем с помощью линейки соединяем точки S и S', это и есть искомый перпендикуляр.
- Аналогичным способом опускаем перпендикуляр из точки R на прямую Q1Q2.
- Точка пересечения построенных перпендикуляров принадлежит эллипсу.
- Повторяя необходимое число раз шаги четырёх предыдущих пунктов, получим искомый эллипс.
С помощью двух иголок и нитки
правитьСсылка на видео для этого способа
Примем, что
- AA1 = 2a — это большая ось эллипса,
- BB1 = 2b — это малая ось эллипса,
- Точки F и F1 — фокусы эллипса. Фокусы лежат на прямой AA1 на расстоянии a от точки B. Расстояние между фокусами FF1 равно
Этот способ основан на определении (фокальном свойстве) эллипса: эллипс — геометрическое место точек, сумма расстояний от каждой из которых до фокусов постоянна и равна 2a.
Для этого способа лист бумаги нужно приколоть к чертёжной доске.
1. В точки фокусов эллипса F и F1 втыкаются две иголки (иглы́, булавки, кнопки, тонких гво́здика…)
2. К этим двум иголкам привязываются (у са́мой поверхности бумаги) концы нити длиной 2a — нужно, чтобы между иголками F и F1 было 2a длины нити. Это удобно осуществить так:
- Берётся нитка длиной в несколько раз больше 2a.
- Один из концов нити привязывается к иголке F.
- В точку B втыкается третья иголка.
- Нить кладётся на лист дальше иголки B от прямой FF1, один раз (один виток) оборачивается вокруг иголки F1 (так что может скользить по ней), затем, держа нить левой рукой за свободный конец, её натягивают вдоль ломанной FBF1.
- Свободный конец нити зажимается в кулаке левой руки, и кулак прижимают к листу бумаги в стороне от будущего эллипса — так, чтобы кулак (и нить) не перемещались ни в направлении к точке F1 ни в направлении прочь от неё. Кулак держать так (зафиксированным) до тех пор, пока эллипс не будет построен. Вместо удерживания конца нити рукой, можно привязать конец нити к четвёртой иголке или кнопке, и, натянув нить, воткнуть эту иголку/кнопку в стороне от будущего эллипса.
- Выдёргиваем (удаляем) иголку B (нить при этом утрачивает натяжение).
- Примечание: Вместо точки B третью иголку можно было воткнуть в точку A.
3. Грифелем карандаша оттягиваем участок нити между иголками F и F1 в сторону от прямой AA1, натягивая нить.
4. Оттягивающий нить грифель карандаша прижимаем к бумаге и, скользя грифелем по натянутой нити от точки A до точки A1, рисуем половину эллипса, лежащую по одну сторону от прямой AA1.
5. Располагаем грифель карандаша по другую сторону от нити, оттягиваем нить в другую сторону от прямой AA1 и, так же как первую, рисуем вторую половину эллипса.
Чтобы нить не спадала вниз с грифеля карандаша, на лист бумаги под нить можно подложить шайбу от резьбового соединения (шайбу подходящей толщины) и оттягивающим нить грифелем касаться бумаги внутри отверстия шайбы — чтобы во время рисования эллипса натянутая нить лежала на шайбе (грифель будет перемещать шайбу по бумаге и вдоль нити).
Усовершенствование способа
правитьМожно не привязывать нить ни к одной из иголок и нарисовать эллипс одним движением карандаша, а не двумя:
- Так же втыкаем три иголки — в точки F, F1 и B.
- Треугольник FF1B окружаем и обтягиваем нитью, и связываем концы натянутой нити — получается кольцо из нити. Длина кольца равна периметру треугольника FF1B.
- Выдёргиваем (удаляем) иголку B (кольцо из нити при этом утрачивает натяжение).
- Поместив грифель карандаша внутри кольца из нити, оттягиваем грифелем нить в сторону от прямой FF1, натягивая нить. Затем, удерживая нить натянутой, прижимаем грифель к бумаге и, скользя грифелем по натянутой нити вокруг отрезка FF1, рисуем эллипс не двумя движениями руки с карандашом, а одним (круговым).
- Примечание: Опять-таки, вместо точки B третью иголку можно было воткнуть в точку A.
С помощью эллипсографа
правитьВ Википедии есть статья «Эллипсограф».
Эллипсограф состоит из двух ползунов, которые могут двигаться по двум перпендикулярным канавкам или направляющим. Ползуны прикреплены к стержню посредством шарниров, и находятся на фиксированном расстоянии друг от друга вдоль стержня. Ползуны движутся вперёд и назад — каждый по своей канавке, — и конец стержня описывает эллипс на плоскости.
Полуоси эллипса a и b представляют собой расстояния от конца стержня до шарниров на ползунах. Обычно расстояния a и b можно варьировать, и тем самым менять форму и размеры вычерчиваемого эллипса.